Существует ограниченное количество способов визуализировать точное строение и мельчайшие патологические процессы в структуре органа зрения. Использование простой офтальмоскопии абсолютно недостаточно для полноценной диагностики. Относительно недавно, с конца прошлого столетия, для точного исследования состояния структур глаза, используется томография оптическая когерентная (ОКТ).

ОКТ глаза — это неинвазивный безопасный метод исследования всех структур органа зрения с целью получения точных данных о мельчайших повреждениях. В степени разрешающей способности с когерентной томографией не сравниться ни одно высокоточное диагностическое оборудование. Процедура позволяет выявлять повреждения глазных структур размерами от 4 микрон.

Суть метода – способность инфракрасного светового пучка неодинаково отражаться от различных структурных особенностей глаза. Методика близка одновременно к двум диагностическим манипуляциям: УЗИ и компьютерной томографии. Но по сравнению с ними значительно выигрывает, так как изображения получаются четкие, разрешающая способность большая, нет радиационного облучения.

Что можно исследовать

Оптическая когерентная томография глаза позволяет оценивать все части органа зрения. Однако наиболее информативна манипуляция при анализе особенностей следующих глазных структур:

  • роговицы;
  • сетчатки;
  • зрительного нерва;
  • передней и задней камер.

Частный вид исследования – оптическая когерентная томография сетчатки. Процедура позволяет выявлять структурные нарушения в этой глазной зоне с минимальных повреждений. Для обследования макулярной зоны – области наибольшей остроты зрения, ОКТ сетчатки не имеет полноценных аналогов.

Показания к проведению манипуляции

Большинство болезней органа зрения, а также симптомы поражения глаза, являются показаниями для когерентной томографии.

Состояния, при которых проводится процедура, следующие:

  • разрывы сетчатки;
  • дистрофические изменения макулы глаза;
  • глаукома;
  • атрофия зрительного нерва;
  • опухоли органа зрения, например, невус хориоидеи;
  • острые сосудистые болезни сетчатки – тромбозы, разрывы аневризм;
  • врожденные или приобретенные аномалии внутренних структур глаза;
  • миопия.

Помимо непосредственно заболеваний, существуют симптомы, которые подозрительны в отношении поражения сетчатки. Они также служат показаниями для исследования:

  • резкое снижение зрения;
  • туман или «мушки» перед глазом;
  • повышенное глазное давление;
  • острая боль в глазу;
  • внезапная слепота;
  • экзофтальм.

Кроме клинических показаний, существуют и социальные. Так как процедура полностью безопасна, ее рекомендуется проводить следующим категориям граждан:

  • женщинам старше 50 лет;
  • мужчинам после 60 лет;
  • всем страдающим сахарным диабетом;
  • при наличии гипертонической болезни;
  • после любых офтальмологических вмешательств;
  • при наличии тяжелых сосудистых катастроф в анамнезе.

Как проходит исследование

Процедура проводится в специальном кабинете, который оснащен ОКТ-томографом. Это прибор, имеющий оптический сканер, из объектива которого, направляются инфракрасные световые пучки в орган зрения. Результат сканирования записывается на подсоединенный монитор в виде послойного томографического изображения. Аппарат преобразует сигналы в специальные таблицы, по которым оценивается структура сетчатки.

Подготовка к обследованию не требуется. Может быть выполнено в любое время. Пациент, находясь в сидячем положении, фокусирует взгляд в специальную точку, указанную врачом. Затем он сохраняет неподвижность и фокусировку в течение 2 минут. Этого достаточно для полноценного сканирования. Прибор обрабатывает результаты, врач оценивает состояние глазных структур и в течение получаса выдается заключение о патологических процессах в органе зрения.

Томография глаза с использованием ОКТ-сканера проводится только в специализированных офтальмологических клиниках. Даже в крупных мегаполисах нет большого количества медицинских центров, предлагающих услугу. Стоимость колеблется в зависимости от объема исследования. Полностью ОКТ глаза оценивается около 2 тысяч рублей, только сетчатка – 800 рублей. Если нужно диагностировать оба органа зрения, стоимость удваивается.

Так как обследование безопасное, противопоказаний немного. Их можно представить так:

  • любые состояния, когда пациент не способен зафиксировать взгляд;
  • психические болезни, сопровождающиеся отсутствием продуктивного контакта с больным;
  • отсутствие сознания;
  • наличие контактной среды в органе зрения.

Последнее противопоказание относительное, так как после вымывания диагностической среды, которая может находиться после различных офтальмологических исследований, например, гониоскопии, манипуляция выполняется. Но на практике в один день две процедуры не совмещают.

Относительные противопоказания также связаны с непрозрачностью глазных сред. Диагностика может проводиться, но изображения получаются не столь качественные. Так как никакого облучения не происходит, воздействия магнита также нет, то наличие кардиостимуляторов и других имплантированных устройств, не является причиной отказа в обследовании.

Заболевания, при которых назначают процедуру

Список болезней, которые могут быть выявлены посредством ОКТ глаза, выглядит так:

  • глаукома;
  • тромбоз сосудов сетчатки;
  • диабетическая ретинопатия;
  • доброкачественные или злокачественные опухоли;
  • разрыв сетчатки;
  • гипертоническая ретинопатия;
  • глистная инвазия органа зрения.

Таким образом, оптическая когерентная томография глаза является абсолютно безопасным методом диагностики. Ее можно применить у широкого круга пациентов, включая тех, кому противопоказаны иные высокоточные методики исследования. Процедура имеет некоторые противопоказания, выполняется только в офтальмологических клиниках.

Учитывая безвредность обследования, ОКТ желательно проводить всем людям старше 50 лет для выявления мелких структурных дефектов сетчатки. это позволит диагностировать болезни на ранних стадиях и дольше сохранить качественное зрение.

2, 3
1 ФГАУ НМИЦ «МНТК «Микрохирургия глаза» им. акад. С. Н. Федорова» Минздрава России, Москва
2 ФКУ «ЦВКГ им. П.В. Мандрыка» Минобороны России, Москва, Россия
3 ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва, Россия

Оптическая когерентная томография (ОКТ) впервые была применена для визуализации глазного яблока более 20 лет назад и до сих пор остается незаменимым методом диагностики в офтальмологии. С помощью ОКТ стало возможно неинвазивно получать оптические срезы тканей с разрешением выше, чем у любого другого метода визуализации. Динамическое развитие метода привело к повышению его чувствительности, разрешающей способности, скорости сканирования. В настоящее время ОКТ активно применяется для диагностики, мониторинга и скринига заболеваний глазного яблока, а также для выполнения научных исследований. Совмещение современных технологий ОКТ и фотоакустических, спектроскопических, поляризационных, допплеро- и ангиографических, эластографических методов дало возможность оценивать не только морфологию тканей, но и их функциональное (физиологическое) и метаболическое состояние. Появились операционные микроскопы с функцией интраоперационного выполнения ОКТ. Представленные устройства могут быть использованы для визуализации как переднего, так и заднего отрезка глаза. В данном обзоре рассматривается развитие метода ОКТ, представлены данные о современных ОКТ-приборах в зависимости от их технологических характеристик и возможностей. Описаны методы функциональной ОКТ.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. № 4. С. 204–211.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. №4. С. 204-211

Optic coherent tomography - technology which became a reality

Zaharova M.A., Kuroedov A.V.

Mandryka Medicine and Clinical Center
The Russian National Research Medical University named after N.I. Pirogov, Moscow

Optical Coherence Tomography (OCT) was first applied for imaging of the eye more than two decades ago and still remains an irreplaceable method of diagnosis in ophthalmology. By OCT one can noninvasively obtain images of tissue with a resolution higher than by any other imaging method. Currently, the OCT is actively used for diagnosing, monitoring and screening of eye diseases as well as for scientific research. The combination of modern technology and optical coherence tomography with photoacoustic, spectroscopic, polarization, doppler and angiographic, elastographic methods made it possible to evaluate not only the morphology of the tissue, but also their physiological and metabolic functions. Recently microscopes with intraoperative function of the optical coherence tomography have appeared. These devices can be used for imaging of an anterior and posterior segment of the eye. In this review development of the method of optical coherence tomography is discussed, information on the current OCT devices depending on their technical characteristics and capabilities is provided.

Key words: оptical coherence tomography (OCT), functional optical coherence tomography, intraoperative optical coherence tomography.

For citation: Zaharova M.A., Kuroedov A.V. Optic coherent tomography - technology which became a reality. // RMJ. Clinical ophthalomology. 2015. № 4. P. 204–211.

Статья посвящена применению оптической когерентной томографии в офтальмологии

Оптическая когерентная томография (ОКТ) – это метод диагностики, который позволяет с высокой разрешающей способностью получать томографические срезы внутренних биологических систем. Название метода впервые приводится в работе коллектива из Массачусетского технологического университета, опубликованной в Science в 1991 г. Авторами были представлены томографические изображения, демонстрирующие in vitro перипапиллярную зону сетчатки и коронарную артерию . Первые прижизненные исследования сетчатки и переднего отрезка глаза с помощью ОКТ были опубликованы в 1993 и 1994 гг. соответственно . В следующем году вышел ряд работ, посвященных применению метода для диагностики и мониторинга заболеваний макулярной области (в т. ч. отека макулы при сахарном диабете, макулярных отверстий, серозной хориоретинопатии) и глаукомы . В 1994 г. разработанная технология ОКТ была передана зарубежному подразделению фирмы Carl Zeiss Inc. (Hamphrey Instruments, Dublin, США), и уже в 1996 г. была создана первая серийная система ОКТ, предназначенная для офтальмологической практики.
Принцип метода ОКТ заключается в том, что световая волна направляется в ткани, где распространяется и отражается или рассеивается от внутренних слоев, которые имеют различные свойства. Получаемые томографические образы – это, по сути, зависимость интенсивности рассеянного или отраженного от структур внутри тканей сигнала от расстояния до них. Процесс построения изображений можно рассматривать следующим образом: на ткань направляется сигнал от источника, и последовательно измеряется интенсивность возвращающегося сигнала через определенные промежутки времени. Так как скорость распространения сигнала известна, то по этому показателю и времени его прохождения определяется расстояние. Таким образом, получается одномерная томограмма (А-скан). Если последовательно смещаться по одной из оси (вертикальной, горизонтальной, косой) и повторять предыдущие измерения, то можно получить двухмерную томограмму. Если последовательно смещаться еще по одной оси, то можно получить набор таких срезов, или объемную томограмму . В ОКТ-системах применяется интерферометрия слабой когерентности. Интерферометрические методы позволяют значительно повысить чувствительность, т. к. с их помощью измеряется амплитуда отраженного сигнала, а не его интенсивность. Основными количественными характеристиками ОКТ-приборов являются осевое (глубинное, аксиальное, вдоль А-сканов) и поперечное (между А-сканами) разрешение, а также скорость сканирования (число А-сканов за 1 с).
В первых ОКТ-приборах использовался последовательный (временной) метод построения изображения (time-domain optical coherence tomography, TD-OC) (табл. 1). В основе этого метода лежит принцип работы интерферометра, предложенный А.А. Михельсоном (1852–1931 гг.). Луч света низкой когерентности от суперлюминесцентного светодиода разделяется на 2 пучка, один из которых отражается исследуемым объектом (глазом), в то время как другой проходит по референтному (сравнительному) пути внутри прибора и отражается специальным зеркалом, положение которого регулируется исследователем. При равенстве длины луча, отраженного от исследуемой ткани, и луча от зеркала возникает явление интерференции, регистрируемое светодиодом. Каждая точка измерения соответствует одному А-скану. Получаемые одиночные А-сканы суммируются, в результате чего формируется двухмерное изображение. Осевое разрешение коммерческих приборов первого поколения (TD-OCT) составляет 8–10 мкм при скорости сканирования 400 А-сканов/с. К сожалению, наличие подвижного зеркала увеличивает время исследования и снижает разрешающую способность прибора. Кроме этого, движения глаз, неизбежно возникающие при данной длительности сканирования, или плохая фиксация во время исследования приводят к формированию артефактов, которые требуют цифровой обработки и могут скрывать важные патологические особенности в тканях.
В 2001 г. была представлена новая технология – ОКТ сверхвысокого разрешения (Ultrahigh-resolution OCT, UHR-OCT), с помощью которой стало возможно получать изображения роговицы и сетчатки с осевым разрешением 2–3 мкм . В качестве источника света использовался фемтосекундный титан-сапфировый лазер (Ti:Al2O3 laser). По сравнению со стандартным разрешением, составляющим 8–10 мкм, ОКТ высокого разрешения стала давать более качественную визуализацию слоев сетчатки in vivo. Новая технология позволяла дифференцировать границы между внутренними и наружными слоями фоторецепторов, а также наружную пограничную мембрану . Несмотря на улучшение разрешающей способности, применение UHR-OCT требовало дорогостоящего и специализированного лазерного оснащения, что не позволяло использовать его в широкой клинической практике .
С внедрением спектральных интерферометров, использующих преобразование Фурье (Spectral domain, SD; Fouirier domain, FD), технологический процесс приобрел ряд преимуществ по сравнению с использованием традиционных временных ОКТ (табл. 1). Хотя методика была известна еще с 1995 г., она не применялась для получения изображений сетчатки почти до начала 2000-х гг. Это связано с появлением в 2003 г. высокоскоростных камер (charge-coupled device, ССD) . Источником света в SD-OCT является широкополосный суперлюминесцентный диод, позволяющий получить низкокогерентный луч, содержащий несколько длин волн. Как и в традиционной, в спектральной ОКТ луч света разделяется на 2 пучка, один из которых отражается от исследуемого объекта (глаза), а второй – от фиксированного зеркала. На выходе интерферометра свет пространственно разлагается по спектру, и весь спектр регистрируется высокоскоростной CCD-камерой. Затем с помощью математического преобразования Фурье происходят обработка спектра интерференции и формирование линейного А-скана. В отличие от традиционной ОКТ, где линейный А-скан получается за счет последовательного измерения отражающих свойств каждой отдельной точки, в спектральной ОКТ линейный А-скан формируется за счет одномоментного измерения лучей, отраженных от каждой отдельной точки . Осевое разрешение современных спектральных ОКТ-приборов достигает 3–7 мкм, а скорость сканирования – более 40 тыс. А-сканов/с. Безусловно, основным преимуществом SD-OCT является его высокая скорость сканирования. Во-первых, она позволяет значительно улучшить качество получаемых изображений путем уменьшения артефактов, возникающих при движениях глаз во время исследования. К слову, стандартный линейный профиль (1024 А-сканов) можно получить в среднем всего за 0,04 с. За это время глазное яблоко совершает только микросаккадные движения с амплитудой в несколько угловых секунд, не влияющих на процесс исследования . Во-вторых, стала возможна 3D-реконструкция изображения, позволяющая оценить профиль исследуемой структуры и ее топографию. Получение множества изображений одновременно при спектральной ОКТ дало возможность диагностики небольших по размерам патологических очагов. Так, при TD-OCT макула отображается по данным 6 радиальных сканов в противовес 128–200 сканам аналогичной области при выполнении SD-OCT . Благодаря высокому разрешению можно четко визуализировать слои сетчатки и внутренние слои сосудистой оболочки. Итогом выполнения стандартного исследования SD-OCT является протокол, представляющий полученные результаты как графически, так и в абсолютных значениях. Первый коммерческий спектральный оптический когерентный томограф был разработан в 2006 г., им стал RTVue 100 (Optovue, США).

В настоящее время некоторые спектральные томографы обладают дополнительными протоколами сканирования, к которым относятся: модуль анализа пигментного эпителия, лазерный сканирующий ангиограф, модуль увеличенной глубины изображения (Enhanced depth imagine, EDI-OCT), глаукомный модуль (табл. 2).

Предпосылкой для разработки модуля увеличенной глубины изображения (EDI-OCT) было ограничение визуализации сосудистой оболочки с помощью спектральной ОКТ за счет поглощения света пигментным эпителием сетчатки и рассеивания его структурами хориоидеи . Ряд авторов использовали спектрометр с длиной волны 1050 нм, с помощью которого удалось качественно визуализировать и провести количественную оценку собственно сосудистой оболочки . В 2008 г. был описан способ получения изображения сосудистой оболочки, который был реализован путем размещения SD-OCТ прибора достаточно близко к глазу, в результате чего стало возможным получение четкого изображение хориоидеи, толщину которой также можно было измерить (табл. 1) . Принцип метода заключается в возникновении зеркальных артефактов из преобразования Фурье. При этом формируется 2 симметричных изображения – позитивное и негативное относительно нулевой линии задержки. Следует отметить, что чувствительность метода снижается с увеличением расстояния от интересующей ткани глаза до этой условной линии. Интенсивность отображения слоя пигментного эпителия сетчатки характеризует чувствительность метода – чем ближе слой к линии нулевой задержки, тем больше его рефлективность. Большинство приборов этого поколения предназначено для исследования слоев сетчатки и витреоретинального интерфейса, поэтому сетчатка расположена ближе к нулевой линии задержки, чем сосудистая оболочка. Во время обработки сканов нижняя половина изображения, как правило, удаляется, отображается только его верхняя часть. Если смещать ОКТ-сканы так, чтобы они пересекли линию нулевой задержки, то сосудистая оболочка окажется ближе к ней, это позволит визуализировать ее более четко . В настоящее время модуль увеличенной глубины изображения доступен у томографов Spectralis (Heidelberg Engineering, Германия) и Cirrus HD-OCT (Carl Zeiss Meditec, США) . Технология EDI-OCT применяется не только для исследования сосудистой оболочки при различной глазной патологии, но и с целью визуализации решетчатой пластинки и оценки ее смещения в зависимости от стадии глаукомы .
К методам Fourier-domain-OCT также относится ОКТ с перестраиваемым источником (swept-source OCT, SS-OCT; deep range imaging, DRI-OCT). В SS-OCT используются лазерные источники со свипированием частоты, т. е. лазеры, у которых частота излучения перестраивается с большой скоростью в пределах определенной спектральной полосы. При этом регистрируется изменение не частоты, а амплитуды отраженного сигнала во время цикла перестройки частоты . В приборе используется 2 параллельных фотодетектора, благодаря которым скорость сканирования составляет 100 тыс. А-сканов/с (в отличие от 40 тыс. А-сканов в SD-OCT). Технология SS-OCT обладает рядом преимуществ. Длина волны 1050 нм, используемая в SS-OCT (в SD-OCT длина волны – 840 нм), обеспечивает возможность четкой визуализации глубоких структур, таких как хориоидеа и решетчатая пластинка, при этом качество изображения в значительно меньшей степени зависит от расстояния интересующей ткани до линии нулевой задержки, как в EDI-OCT . Кроме того, при данной длине волны происходит меньшее рассеивание света при его прохождении сквозь мутный хрусталик, что обеспечивает более четкие изображения у пациентов с катарактой. Окно сканирования охватывает 12 мм заднего полюса (для сравнения: у SD-OCT – 6–9 мм), поэтому на одном скане одновременно могут быть представлены зрительный нерв и макула . Результатами исследования методом SS-OCT являются карты, которые могут быть представлены в виде общей толщины сетчатки или отдельных ее слоев (слой нервных волокон сетчатки, слой ганглиозных клеток вместе с внутренним плексиморфным слоем, хориоидеа). Технология swept-source OCT активно применяется для исследований патологии макулярной зоны, хориоидеи, склеры, стекловидного тела, а также для оценки слоя нервных волокон и решетчатой пластинки при глаукоме . В 2012 г. был представлен первый коммерческий Swept-Source OCT, реализованный в приборе Topcon Deep Range Imaging (DRI) OCT-1 Atlantis 3D SS-OCT (Topcon Medical Systems, Japan). С 2015 г. на зарубежном рынке стал доступен коммерческий образец DRI OCT Triton (Topcon, Japan) cо скоростью сканирования 100 тыс. А-сканов/с и разрешением 2–3 мкм.
Традиционно ОКТ использовалась для пред- и послеоперационной диагностики. С развитием технологического процесса стало возможно использование ОКТ-технологии, интегрированной в хирургический микроскоп. В настоящее время предлагаются сразу несколько коммерческих устройств с функцией выполнения интраоперационной ОКТ. Envisu SD-OIS (spectral-domain ophthalmic imaging system, SD-OIS, Bioptigen, США) – спектральный оптический когерентный томограф, предназначенный для визуализации ткани сетчатки, также с его помощью можно получить изображения роговицы, склеры и конъюнктивы. SD-OIS включает в себя портативный зонд и установки микроскопа, имеет осевое разрешение 5 мкм и скорость сканирования 27 кГц. Другая компания – OptoMedical Technologies GmbH (Германия) также разработала и представила ОКТ-камеру, которая может быть установлена на операционный микроскоп. Камера может быть использована для визуализации переднего и заднего сегментов глаза. Компания указывает, что данное устройство может быть полезным при выполнении таких хирургических пособий, как пересадка роговицы, операции по поводу глаукомы, хирургия катаракты и витреоретинальная хирургия. OPMI Lumera 700/Rescan 700 (Carl Zeiss Meditec, США), выпущенный в 2014 г., является первым коммерчески доступным микроскопом с интегрированным в него оптическим когерентным томографом. Оптические пути микроскопа используются для получения ОКТ-изображения в реальном времени. С помощью прибора можно измерить толщину роговицы и радужки, глубину и угол передней камеры во время хирургического вмешательства. ОКТ подходит для наблюдения и контроля нескольких этапов в хирургии катаракты: лимбальных разрезов, капсулорексиса и факоэмульсификации. Кроме того, система может обнаружить остатки вискоэластика и контролировать положение линзы во время и в конце операции. Во время хирургического вмешательства на заднем сегменте можно визуализировать витреоретинальные спайки, отслойку задней гиалоидной мембраны, наличие фовеолярных изменений (отек, разрыв, неоваскуляризация, кровоизлияние). В настоящее время в дополнение к уже имеющимся разрабатываются новые установки .
ОКТ – по сути, метод, позволяющий оценить на гистологическом уровне морфологию тканей (форму, структуру, размер, пространственную организацию в целом) и их составных частей. Приборы, которые включают в себя современные ОКТ-технологии и такие методы, как фотоакустическая томография, спектроскопическая томография, поляризационная томография, допплерография и ангиография, эластография, оптофизиология, дают возможность оценить функциональное (физиологическое) и метаболическое состояние исследуемых тканей. Поэтому в зависимости от возможностей, которыми может располагать ОКТ, ее принято классифицировать на морфологическую, функциональную и мультимодальную.
Фотоакустическая томография (photoacoustic tomography, PAT) использует различия в поглощении тканями коротких лазерных импульсов, последующем их нагреве и крайне быстром терморасширении для получения ультразвуковых волн, которые детектируются пьезоэлектрическими приемниками. Преобладание гемоглобина в качестве основного абсорбента данного излучения означает, что с помощью фотоакустической томографии можно получить контрастные изображения сосудистой сети. В то же время метод дает относительно мало информации о морфологии окружающей ткани. Таким образом, сочетание фотоакустической томографии и ОКТ позволяет оценить микрососудистую сеть и микроструктуру окружающих тканей .
Способность биологических тканей поглощать или рассеивать свет в зависимости от длины волны может быть использована для оценки функциональных параметров – в частности, насыщения гемоглобина кислородом. Этот принцип реализован в спектроскопической ОКТ (Spectroscopic OCT, SP-OCT). Хотя метод в настоящее время находится в стадии разработки, а его использование ограничивается экспериментальными моделями, тем не менее он представляется перспективным в плане исследования насыщения кислородом крови, предраковых поражений, внутрисосудистых бляшек и ожогов .
Поляризационная ОКТ (Polarization sensitive OCT, PS-OCT) измеряет состояние поляризации света и основана на том факте, что некоторые ткани могут изменить состояние поляризации зондирующего светового пучка. Различные механизмы взаимодействия света и тканей могут вызвать такие изменения состояния поляризации, как двойное лучепреломление и деполяризацию, что уже частично ранее использовалось в лазерной поляриметрии. Двулучепреломляющими тканями являются строма роговицы, склера, глазные мышцы и сухожилия, трабекулярная сеть, слой нервных волокон сетчатки и рубцовая ткань . Эффект деполяризации наблюдается при исследовании меланина, содержащегося в тканях пигментного эпителия сетчатки (ПЭС), пигментном эпителии радужки, невусах и меланомах хориоидеи, а также в виде скоплений пигмента сосудистой оболочки . Первый поляризационный низкокогерентный интерферометр был реализован в 1992 г. . В 2005 г. PS-OCT был продемонстрирован для визуализации сетчатки человеческого глаза in vivo . Одно из преимуществ метода PS-OCT заключается в возможности детальной оценки ПЭС, особенно в тех случаях, когда на ОКТ, например, при неоваскулярной макулодистрофии, пигментный эпителий плохо различим из-за сильного искажения слоев сетчатки и обратного светорассеяния (рис. 1). Есть и прямое клиническое предназначение этого метода. Дело в том, что визуализация атрофии слоя ПЭС может объяснить, почему у этих пациентов на фоне лечения после анатомического восстановления сетчатки острота зрения не улучшается . Поляризационная ОКТ также применяется для оценки состояния слоя нервных волокон при глаукоме . Следует отметить, что и другие структуры, деполяризующие в пределах пораженной сетчатки, могут быть обнаружены с помощью PS-OCT. Первоначальные исследования у больных с диабетическим макулярным отеком показали, что жесткие экссудаты являются деполяризующими структурами. Поэтому PS-OCT может быть использована для обнаружения и количественной оценки (размер, количество) жестких экссудатов при этом состоянии .
Оптическая когерентная эластография (optical coherence elastography, OCE) используется для определения биомеханического свойства тканей. ОКТ-эластография является аналогом ультразвуковой сонографии и эластографии, но с преимуществами, присущими ОКТ, такими как высокое разрешение, неинвазивность, получение изображений в реальном времени, глубина проникновения в ткани. Метод впервые был продемонстрирован в 1998 г. для изображения механических свойств in vivo кожи человека . Экспериментальные исследования донорских роговиц с помощью данного метода продемонстрировали, что ОКТ-эластография может количественно оценить клинически значимые механические свойства данной ткани .
Первые спектральные ОКТ с функцией допплерографии (Doppler optical coherence tomography, D-OCT) для измерения глазного кровотока появились в 2002 г. . В 2007 г. был измерен суммарный кровоток сетчатки с помощью кольцевых В-сканов вокруг зрительного нерва . Однако метод имеет ряд ограничений. Например, с помощью допплеровской ОКТ трудно различить медленный кровоток в мелких капиллярах . Помимо этого, большинство сосудов проходят почти перпендикулярно к лучу скана, поэтому обнаружение сигнала допплеровского сдвига критически зависит от угла падающего света . Попыткой преодолеть недостатки D-OCT является ОКТ-ангиография. Для реализации данного метода была необходима высококонтрастная и сверхскоростная технология ОКТ. Ключевым в развитии и усовершенствовании методики стал алгоритм под названием «сплит-спектральная ангиография с декорреляцией амплитуды» (split-spectrum amplitude decorrelation angiography, SS-ADA). SS-ADA-алгоритм подразумевает проведение анализа при использовании разделения полного спектра оптического источника на несколько частей с последующим раздельным подсчетом декорреляции для каждого частотного диапазона спектра. Одновременно проводится анизотропный анализ декорреляции и выполняется ряд сканов с полной спектральной шириной, которые обеспечивают высокое пространственное разрешение сосудистой сети (рис. 2, 3) . Данный алгоритм используется в томографе Avanti RTVue XR (Optovue, США). ОКТ-ангиография является неинвазивной трехмерной альтернативой обычной ангиографии. К преимуществам метода относятся неинвазивность исследования, отсутствие необходимости применения флуоресцентных красителей, возможность измерения глазного кровотока в сосудах в количественном выражении.

Оптофизиология – способ неинвазивного изучения физиологических процессов в тканях с помощью ОКТ. ОКТ чувствительна к пространственным изменениям в оптическом отражении или рассеянии света тканями, связанными с локальными изменениями показателя преломления. Физиологические процессы, происходящие на клеточном уровне, такие как деполяризация мембраны, набухание клеток и изменения метаболизма, могут привести к небольшим, но обнаруживаемым изменениям локальных оптических свойств биологической ткани. Первые доказательства того, что ОКТ может быть использована для получения и оценки физиологической реакции на световую стимуляцию сетчатки, были продемонстрированы в 2006 г. . В последующем данная методика была применена для исследования человеческой сетчатки in vivo. В настоящее время рядом исследователей продолжается работа в этом направлении .
ОКТ – один из самых успешных и широко используемых методов визуализации в офтальмологии. В настоящее время приборы для технологии находятся в списке продукции более чем 50 компаний в мире. За последние 20 лет разрешение улучшилось в 10 раз, а скорость сканирования увеличилась в сотни раз. Непрерывный прогресс в технологии ОКТ превратил этот метод в ценный инструмент для исследования структур глаза на практике. Разработка за последнее десятилетие новых технологий и дополнений ОКТ позволяет поставить точный диагноз, осуществлять динамическое наблюдение и оценивать результаты лечения. Это пример того, как новые технологии могут решать реальные медицинские проблемы. И, как это часто бывает с новыми технологиями, дальнейший опыт применения и разработка приложений могут дать возможность более глубокого понимания патогенеза патологии глаз.

Литература

1. Huang D., Swanson E.A., Lin C.P. et al. Optical coherence tomography // Science. 1991. Vol. 254. № 5035. P. 1178–1181.
2. Swanson E.A., Izatt J.A., Hee M.R. et al. In-vivo retinal imaging by optical coherence tomography // Opt Lett. 1993. Vol. 18. № 21. P. 1864–1866.
3. Fercher A.F., Hitzenberger C.K., Drexler W., Kamp G., Sattmann H. In-Vivo optical coherence tomography // Am J Ophthalmol. 1993. Vol. 116. № 1. P. 113–115.
4. Izatt J.A., Hee M.R., Swanson E.A., Lin C.P., Huang D., Schuman J.S., Puliafito C.A., Fujimoto J.G. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography // Arch Ophthalmol. 1994. Vol. 112. № 12. P. 1584–1589.
5. Puliafito C.A., Hee M.R., Lin C.P., Reichel E., Schuman J.S., Duker J.S., Izatt J.A., Swanson E.A., Fujimoto J.G. Imaging of macular diseases with optical coherence tomography // Ophthalmology. 1995. Vol. 102. № 2. P. 217–229.
6. Schuman J.S., Hee M.R., Arya A.V., Pedut-Kloizman T., Puliafito C.A., Fujimoto J.G., Swanson E.A. Optical coherence tomography: a new tool for glaucoma diagnosis // Curr Opin Ophthalmol. 1995. Vol. 6. № 2. P. 89–95.
7. Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P., Hertzmark E., Izatt .JA., Swanson E.A., Fujimoto J.G. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 5. P. 586–596.
8. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of macular holes // Ophthalmology. 1995 Vol. 102. № 5. P. 748–756.
9. Hee M.R., Puliafito C.A., Wong C., Reichel E., Duker J.S., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of central serous chorioretinopathy // Am J Ophthalmol.1995. Vol. 120. № 1. P. 65–74.
10. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Rutledge B., Schuman J.S., Swanson E.A., Fujimoto J.G. Quantitative assessment of macular edema with optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 8. P. 1019–1029.
11. Висковатых А.В., Пожар В.Э., Пустовойт В.И. Разработка оптического когерентного томографа для офтальмологии на быстроперестраиваемых акустооптических фильтрах // Сборник материалов III Евразийского конгресса по медицинской физике и инженерии «Медицинская физика – 2010». 2010. Т. 4. C. 68–70. М., 2010 .
12. Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography // Nat Med. 2001. Vol. 7. № 4. P. 502–507.
13. Drexler W., Sattmann H., Hermann B. et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography // Arch Ophthalmol. 2003. Vol. 121. P. 695–706.
14. Ko T.H., Fujimoto J.G., Schuman J.S. et al. Comparison of ultrahigh and standard resolution optical coherence tomography for imaging of macular pathology // Arch Ophthalmol. 2004. Vol. 111. P. 2033–2043.
15. Ko T.H., Adler D.C., Fujimoto J.G. et al. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source // Opt Express. 2004. Vol. 12. P. 2112–2119.
16. Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. Measurement of intraocular distances by backscattering spectral interfereometry // Opt Commun. 1995. Vol. 117. P. 43–48.
17. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Opt Express. 2003. Vol. 11. № 18. P. 2183–2189.
18. Астахов Ю.С., Белехова С.Г. Оптическая когерентная томография: как все начиналось и современные диагностические возможности методики // Офтальмологические ведомости. 2014. Т. 7. № 2. C. 60–68. .
19. Свирин А.В., Кийко Ю.И., Обруч Б.В., Богомолов А.В. Спектральная когерентная оптическая томография: принципы и возможности метода // Клиническая офтальмология. 2009. Т. 10. № 2. C. 50–53 .
20. Kiernan D.F., Hariprasad S.M., Chin E.K., Kiernan C.L, Rago J., Mieler W.F. Prospective comparison of cirrus and stratus оptical coherence tomography for quantifying retinal thickness // Am J Ophthalmol. 2009. Vol. 147. № 2. P. 267–275.
21. Wang R.K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a monte carlo study towards optical clearing of biotissues // Phys Med Biol. 2002. Vol. 47. № 13. P. 2281–2299.
22. Povazay B., Bizheva K., Hermann B. et al. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm // Opt Express. 2003. Vol. 11. № 17. P. 1980–1986.
23. Spaide R.F., Koizumi H., Pozzoni M.C. et al. Enhanced depth imaging spectral-domain optical coherence tomography // Am J Ophthalmol. 2008. Vol. 146. P. 496–500.
24. Margolis R., Spaide R.F. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes // Am J Ophthalmol. 2009. Vol. 147. P. 811–815.
25. Ho J., Castro D.P., Castro L.C., Chen Y., Liu J., Mattox C., Krishnan C., Fujimoto J.G., Schuman J.S., Duker J.S. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. № 7. P. 3714–3720.
26. Anand R. Enhanced depth optical coherence tomographyiImaging - a review // Delhi J Ophthalmol. 2014. Vol. 24. № 3. P. 181–187.
27. Rahman W., Chen F.K., Yeoh J. et al. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography // Invest Ophthalmol Vis Sci. 2011. Vol. 52. № 5. P. 2267–2271.
28. Park S.C., Brumm J., Furlanetto R.L., Netto C., Liu Y., Tello C., Liebmann J.M., Ritch R. Lamina cribrosa depth in different stages of glaucoma // Invest Ophthalmol Vis Sci. 2015. Vol. 56. № 3. P. 2059–2064.
29. Park S.C., Hsu A.T., Su D., Simonson J.L., Al-Jumayli M., Liu Y., Liebmann J.M., Ritch R. Factors associated with focal lamina cribrosa defects in glaucoma // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 13. P. 8401–8407.
30. Faridi O.S., Park S.C., Kabadi R., Su D., De Moraes C.G., Liebmann J.M., Ritch R. Effect of focal lamina cribrosa defect on glaucomatous visual field progression // Ophthalmology. 2014 Vol. 121. № 8. P. 1524–1530.
31. Potsaid B., Baumann B., Huang D., Barry S., Cable A.E., Schuman J.S., Duker J.S., Fujimoto J.G. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second // Opt Express 2010. Vol. 18. № 19. P. 20029–20048.
32. Adhi M., Liu J.J., Qavi A.H., Grulkowski I., Fujimoto J.G., Duker J.S. Enhanced visualization of the choroido-scleral interface using swept-source OCT // Ophthalmic Surg Lasers Imaging Retina. 2013. Vol. 44. P. 40–42.
33. Mansouri K., Medeiros F.A., Marchase N. et al. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography // Ophthalmology. 2013. Vol. 120. № 12. P. 2508–2516.
34. Mansouri K., Nuyen B., Weinreb R.N. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
35. Takayama K., Hangai M., Kimura Y. et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using sweptsource optical coherence tomography // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 7. P. 4798–4807.
36. Park H.Y., Shin H.Y., Park C.K. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging // Am J Ophthalmol. 2014. Vol. 157. № 3. P. 550–557.
37. Michalewska Z., Michalewski J., Adelman R.A., Zawislak E., Nawrocki J. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes // Retina. 2015. Vol. 35. № 3. P. 487–491.
38. Lopilly Park H.Y., Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia // Am J Ophthalmol. 2014. Vol. 157. № 4. P. 876–884.
39. Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y., Maruyama K., Yuasa T., Akiba M., Nakazawa T. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma // PLoS One. 2015 Apr 15. Vol. 10 (4). e0122347.
40. Mansouri K., Nuyen B., Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
41. Binder S. Optical coherence tomography/ophthalmology: Intraoperative OCT improves ophthalmic surgery // BioOpticsWorld. 2015. Vol. 2. P. 14–17.
42. Zhang Z.E., Povazay B., Laufer J., Aneesh A., Hofer B., Pedley B., Glittenberg C., Treeby B., Cox B., Beard P., Drexler W. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging // Biomed Opt Express. 2011. Vol. 2. № 8. P. 2202–2215.
43. Morgner U., Drexler W., Ka..rtner F. X., Li X. D., Pitris C., Ippen E. P., and Fujimoto J. G. Spectroscopic optical coherence tomography // Opt Lett. 2000. Vol. 25. № 2. P. 111–113.
44. Leitgeb R., Wojtkowski M., Kowalczyk A., Hitzenberger C. K., Sticker M., Ferche A. F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography // Opt Lett. 2000. Vol. 25. № 11. P. 820–822.
45. Pircher M., Hitzenberger C.K., Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye // Progress in Retinal and Eye Research. 2011. Vol. 30. № 6. P. 431–451.
46. Geitzinger E., Pircher M., Geitzenauer W., Ahlers C., Baumann B., Michels S., Schmidt-Erfurth U., Hitzenberger C.K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography // Opt Express. 2008. Vol. 16. P. 16410–16422.
47. Pircher M., Goetzinger E., Leitgeb R., Hitzenberger C.K. Transversal phase resolved polarization sensitive optical coherence tomography // Phys Med Biol. 2004. Vol. 49. P. 1257–1263.
48. Mansouri K., Nuyen B., N Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
49. Geitzinger E., Pircher M., Hitzenberger C.K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina // Opt Express. 2005. Vol. 13. P. 10217–10229.
50. Ahlers C., Gotzinger E., Pircher M., Golbaz I., Prager F., Schutze C., Baumann B., Hitzenberger C.K., Schmidt-Erfurth U. Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. P. 2149–2157.
51. Geitzinger E., Baumann B., Pircher M., Hitzenberger C.K. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography // Opt Express. 2009. Vol. 17. P. 22704–22717.
52. Lammer J., Bolz M., Baumann B., Geitzinger E., Pircher M., Hitzenberger C., Schmidt-Erfurth U. 2010. Automated Detection and Quantification of Hard Exudates in Diabetic Macular Edema Using Polarization Sensitive Optical Coherence Tomography // ARVO abstract 4660/D935.
53. Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue // Opt Express. 1998. Vol. 3. № 6. P. 199–211.
54. Ford M.R., Roy A.S., Rollins A.M. and Dupps W.J.Jr. Serial biomechanical comparison of edematous,normal, and collagen crosslinked human donor corneas using optical coherence elastography // J Cataract Refract Surg. 2014. Vol. 40. № 6. P. 1041–1047.
55. Leitgeb R., Schmetterer L.F., Wojtkowski M., Hitzenberger C.K., Sticker M., Fercher A.F. Flow velocity measurements by frequency domain short coherence interferometry. Proc. SPIE. 2002. P. 16–21.
56. Wang Y., Bower B.A., Izatt J.A., Tan O., Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2007. Vol. 12. P. 412–415.
57. Wang R. K., Ma Z., Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography // Opt. Lett. 2006. Vol. 31. № 20. P. 3001–3003.
58. Wang R. K., Lee A. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo // Opt Express. 2009. Vol. 17. № 11. P. 8926–8940.
59. Wang Y., Bower B. A., Izatt J. A., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2008. Vol. 13. № 6. P. 640–643.
60. Wang Y., Fawzi A., Tan O., Gil-Flamer J., Huang D. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography // Opt Express. 2009. Vol. 17. № 5. P. 4061–4073.
61. Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Opt Express. 2012. Vol. 20. № 4. P. 4710–4725.
62. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma // Ophthalmology. 2014. Vol. 121. № 7. P. 1322–1332.
63. Bizheva K., Pflug R., Hermann B., Povazay B., Sattmann H., Anger E., Reitsamer H., Popov S., Tylor J.R., Unterhuber A., Qui P., Ahnlet P.K., Drexler W. Optophysiology: depth resolved probing of retinal physiology with functional ultrahigh resolution optical coherence tomography // PNAS (Proceedings of the National Academy of Sciences of America). 2006. Vol. 103. № 13. P. 5066–5071.
64. Tumlinson A.R., Hermann B., Hofer B., Považay B., Margrain T.H., Binns A.M., Drexler W., Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography // Jpn. J. Ophthalmol. 2009. Vol. 53. P. 315–326.


Практически все заболевания глаз, в зависимости от тяжести течения, способны оказывать негативное влияние на качество зрения. В связи с этим самым важным фактором, определяющим успех лечения – это своевременная диагностика. Основной причиной, частичной или полной потери зрения при таких офтальмологических заболеваниях, как глаукома или различные поражения сетчатки, является отсутствие или слабое проявление симптомов.

Благодаря возможностям современной медицины, обнаружение такой патологии на ранней стадии, позволяет избежать возможных осложнений и остановить прогрессирование болезни. Однако необходимость ранней диагностики, подразумевает проведение обследования условно здоровых людей, которые не готовы подвергаться изнурительным или травматичным процедурам.

Появление оптической когерентной томографии (ОКТ) не только помогло решить вопрос о выборе универсальной диагностической методики, но и изменило мнение офтальмологов о некоторых глазных заболеваниях. На чем основан принцип работы ОКТ, что это такое и каковы его диагностические возможности? Ответ на эти и другие вопросы можно найти в статье.

Принцип действия

Оптическая когерентная томография представляет собой диагностический лучевой метод, применяемый преимущественно в офтальмологии, позволяющий получить структурное изображение тканей глаза на клеточном уровне, в поперечном сечении и с высоким разрешением. Механизм получения информации в ОКТ объединяет в себе принципы двух основных диагностических методик – УЗИ и рентгеновской КТ.

Если обработка данных осуществляется по принципам, сходным с компьютерной томографией, регистрирующей разницу интенсивности проходящего сквозь тело рентгеновского излучения, то при выполнении ОКТ, регистрируют количество отраженного от тканей инфракрасного излучения. Такой подход имеет некоторое сходство с УЗИ, где измеряют время прохождения ультразвуковой волны от источника до обследуемого объекта и обратно к регистрирующему устройству.

Используемый в диагностике пучок инфракрасного излучения, имеющий длину волны от 820 до 1310 нм, фокусируют на объекте исследования, а затем замеряют величину и интенсивность отраженного светового сигнала. В зависимости от оптических характеристик различных тканей, часть луча рассеивается, а часть отражается, позволяя получить представление о структуре обследуемой зоны на различной глубине.

Полученная интерференционная картина, с помощью компьютерной обработки, приобретает вид изображения, на котором, в соответствии с предусмотренной шкалой, зоны, характеризующиеся высокой отражающей способностью, окрашиваются в цвета красного спектра (теплые), а низкой – в диапазон от синего до черного (холодные). Самой высокой отражающей способностью отличается слой пигментного эпителия радужки глаза и нервных волокон, плексиформный слой сетчатки обладает средней отражающей способностью, а стекловидное тело абсолютно прозрачно для инфракрасных лучей, поэтому на томограмме оно окрашено в черный цвет.

Важно! Короткая длина инфракрасной волны, используемой в ОКТ, не позволяет проводить исследование глубокорасположенных органов, а также тканей, имеющих значительную толщину. В последнем случае, можно получить информацию, лишь о поверхностном слое исследуемого объекта, например, слизистой.

Болевой синдром - показание для проведения оптико-когерентной томографии

Виды

В основе всех видов оптико-когерентной томографии лежит регистрация интерференционной картины, создаваемой двумя лучами, испускаемыми из одного источника. В связи с тем, что скорость, световой волны, столь велика, что не может быть зафиксирована и измерена, используют свойство когерентных световых волн создавать эффект интерференции.

Для этого луч, испускаемый суперлюминисцентным диодом, расщепляют на 2 части, при этом первый направляют на область исследования, а второй на зеркало. Обязательным условием необходимым для достижения эффекта интерференции, является равное расстояние от фотодетектора до объекта и от фотодетектора до зеркала. Изменения интенсивности излучения, позволяют охарактеризовать структуру каждой конкретной точки.

Существует 2 вида ОКТ, применяемых для исследования орбиты глаза, качество результатов которых, существенно разнятся:

  • Time-dоmаin ОСТ (методика Михельсона);
  • Sресtral ОСТ (спектральная ОКТ).

Time-dоmаin ОСТ – наиболее распространенный, до недавнего времени, способ сканирования, разрешающая способность которого составляет около 9 мкм. Для получения 1 двухмерного скана определенной точки, врач должен был вручную перемещать подвижное зеркало, располагающееся на опорном плече, до достижения равного расстояния между всеми объектами. От точности и быстроты перемещения, зависело время сканирования и качество получаемых результатов.

Спектральная ОКТ. В отличие от Time-dоmаin ОСТ, в спектральной ОКТ в качестве излучателя использовался широкополосный диод, позволяющий получить сразу несколько световых волн различной длины. Кроме того, он был снабжен высокоскоростной ССD камерой и спектрометром, которые одновременно фиксировали все составные части отраженной волны. Таким образом, для получения нескольких сканов не требовалось вручную перемещать механические части прибора.

Основной проблемой получения максимально качественной информации, является высокая чувствительность оборудования к незначительным движениям глазного яблока, вызывающим определенные погрешности. Поскольку, одно исследование на Time-dоmаin ОСТ занимает 1,28 секунды, за это время, глаз успевает совершить 10–15 микроперемещений (движения называемые «микросаккадами»), что вызывает затруднения в чтении результатов.

Спектральные томографы позволяют получить вдвое больший объем информации за 0,04 секунды. За это время глаз не успевает сместиться, соответственно, конечный результат не содержит искажающих артефактов. Основным преимуществом ОКТ можно считать возможность получения трехмерного изображения исследуемого объекта (роговица, головка зрительного нерва, фрагмент сетчатки).


Принцип получения изображения, широко используемый в офтальмологии

Показания

Показаниями к оптической когерентной томографии заднего отрезка глаза, являются диагностика и мониторинг результатов лечения следующих патологий:

  • дегенеративные изменения сетчатки;
  • глаукома;
  • макулярные разрывы;
  • макулярный отек;
  • атрофия и патологии диска зрительного нерва;
  • отслойка сетчатки;
  • диабетическая ретинопатия.

Патологии переднего отрезка глаза, требующие проведения ОКТ:

  • кератиты и язвенные повреждения роговицы;
  • оценка функционального состояния дренажных устройств при глаукоме;
  • оценка толщины роговицы перед проведением лазерной коррекции зрения методом LАSIК, заменой хрусталика и установкой интраокулярных линз (ИОЛ), кератопластикой.

Подготовка и проведение

Оптическая когерентная томография глаза не требует подготовки. Однако, в большинстве случаев, при обследовании структур заднего отрезка, применяют препараты для расширения зрачка. В начале обследования пациента просят смотреть в линзу фундус-камеры на мигающий там объект, и зафиксировать на нем взгляд. Если пациент не видит объекта, вследствие низкой остроты зрения, то он должен смотреть прямо перед собой не моргая.

Затем, камеру перемещают по направлению к глазу, пока на компьютерном мониторе не появится четкое изображение сетчатки. Расстояние между глазом и камерой, позволяющее получить оптимальное по качеству изображение, должно быть равно 9 мм. В момент достижения оптимальной видимости, камеру фиксируют с помощью кнопки и регулируют изображение, добиваясь максимальной четкости. Управление процессом сканирования, осуществляют с помощью регуляторов и кнопок, расположенных на панели управления томографа.

Следующий этап процедуры – это выравнивание изображения и удаление со скана артефактов и помех. После получения окончательных результатов, все количественные показатели сравнивают с показателями здоровых людей аналогичной возрастной группы, а также с показателями пациента, полученными в результате проведенных ранее обследований.

Важно! ОКТ не проводят после офтальмоскопии или гониоскопии, так как применение смазочной жидкости, необходимой для осуществления вышеуказанных процедур, не позволит получить качественное изображение.


Проведение сканирования занимает не более четверти часа

Интерпретация результатов

Интерпретация результатов компьютерной томографии глаза основывается на анализе полученных снимков. В первую очередь, обращают внимание на следующие факторы:

  • наличие изменений внешнего контура тканей;
  • взаиморасположение их различных слоев;
  • степень светоотражения (наличие посторонних включений, усиливающих отражение, появление очагов или поверхностей с пониженной или повышенной прозрачностью).

С помощью количественного анализа можно выявить степень уменьшения или увеличения толщины изучаемой структуры или ее слоев, оценить размеры и изменения всей осматриваемой поверхности.

Исследование роговицы

При исследовании роговицы, самое важное – это точно определить зону имеющихся структурных изменений и зафиксировать их количественные характеристики. Впоследствии можно будет объективно оценить наличие положительной динамики от применяемой терапии. ОКТ роговицы, является наиболее точным методом, позволяющим определить ее толщину без непосредственного контакта с поверхностью, что особенно актуально при ее повреждениях.

Исследование радужки

В связи с тем, что радужка состоит из трех слоев, имеющих разную отражающую способность, визуализировать с равной четкостью все слои практически невозможно. Наиболее интенсивные сигналы поступают от пигментного эпителия – заднего слоя радужки, а наиболее слабые – от переднего пограничного слоя. С помощью ОКТ можно с высокой точностью диагностировать ряд патологических состояний, не имеющих на момент обследования каких-либо клинических проявлений:

  • синдром Франк-Каменецкого;
  • синдром пигментной дисперсии;
  • эссенциальная мезодермальная дистрофия;
  • псевдоэксфолиативный синдром.

Исследование сетчатки

Оптическая когерентная томография сетчатки позволяет дифференцировать ее слои, в зависимости от светоотражающей способности каждого. Слой нервных волокон обладает самой высокой отражающей способностью, слой плексиформного и ядерного слоев – средней, а слой фоторецепторов абсолютно прозрачен для излучения. На томограмме, внешний край сетчатки ограничен, окрашенным в красный цвет, слоем хориокапилляров и ПЭС (пигментного эпителия сетчатки).

Фоторецепторы отображаются в виде затемненной полосы, находящейся непосредственно перед слоями хориокаппиляров и ПЭС. Нервные волокна, расположенные на внутренней поверхности сетчатки, окрашены в ярко-красный цвет. Сильно выраженный контраст между цветами, позволяет производить точные замеры толщины каждого слоя сетчатки.

Томография сетчатки глаза позволяет выявить макулярные разрывы, на всех этапах развития – от предразрыва, для которого характерна отслойка нервных волокон при сохранении целостности остальных слоев, до полного (ламеллярного) разрыва, определяющегося появлением дефектов внутренних слоев при сохранении целостности слоя фоторецепторов.

Важно! Степень сохранности слоя ПЭС, степень дегенерации тканей вокруг разрыва, являются факторами, определяющими степень сохранения зрительных функций.


Томография сетчатки покажет даже макулярный разрыв

Исследование зрительного нерва. Нервные волокна, являющиеся основными строительным материалом зрительного нерва, имеют высокую отражающую способность и четко определяются среди всех структурных элементов глазного дна. Особенно информативно, трехмерное изображение диска зрительного нерва, получить которое, можно выполнив серию томограмм, в различных проекциях.

Все параметры, определяющие толщину слоя нервных волокон, автоматически подсчитываются компьютером и подаются в виде количественных значений каждой проекции (височной, верхней, нижней, носовой). Такие измерения позволяют определять как наличие локальных поражений, так и диффузные изменения зрительного нерва. Оценка отражающей способности диска зрительного нерва (ДЗН) и сравнение полученных результатов с предыдущими, позволяет оценить динамику улучшений или прогрессирование заболевания при гидратации и дегенерации ДЗН.

Спектральная оптическая когерентная томография предоставляет врачу чрезвычайно обширные диагностические возможности. Однако каждый новый метод диагностики требует разработки различных критериев для оценки основных групп заболеваний. Разнонаправленность результатов, получаемых при проведении ОКТ у пожилых людей и детей, значительно повышает требования к квалификации офтальмолога, что становится определяющим фактором при выборе клиники, где делать обследование.

Сегодня многие специализированные клиники имеют новые модели ОК-томографов, на которых работают специалисты, закончившие курсы дополнительного образования, и получившие аккредитацию. Значительную лепту в повышении квалификации врачей, внес международный центр «Ясный взор», предоставляющий возможность офтальмологам и оптометристам повысить уровень знаний без отрыва от работы, а также получить аккредитацию.

При проблемах со зрением в одном или обоих глазах назначается комплексная диагностика. Оптическая когерентная томография - современная, высокоточная диагностическая процедура, позволяющая получить четкие изображения в срезе структур глазного яблока - роговицы и сетчатки глаза. Исследование проводят по показаниям, чтобы результаты были максимально точными. К процедуре важно правильно подготовиться.

Когда назначают оптическую когерентную томографию?

Современная офтальмология имеет в своем распоряжении множество диагностических технологий и методик, позволяющих в точности исследовать сложные внутриглазные структуры, благодаря чему лечение и реабилитация проходят намного успешнее. Оптическая когерентная томография глаза - информативный, бесконтактный и безболезненный метод, с помощью которого удается детально изучить прозрачные, невидимые при традиционных исследованиях глазные структуры в поперечном срезе.

Процедура проводится по показаниям. ОКТ дает возможность диагностировать такие офтальмологические заболевания:

  • макулярный отек и разрыв;
  • деформация диска зрительного нерва (ДЗН);
  • глаукома;
  • ретинальная дистрофия стекловидного тела;
  • расслоение сетчатки;
  • дегенерация макулы;
  • субретинальная неоваскулярная и эпиретинальная мембрана;
  • сенильная макулярная дистрофия.

Функциональность прибора дает возможность доктору детально обследовать больной орган и получить полную информацию о его состоянии.

Оптико-когерентный томограф бывает 2 разновидностей - для сканирования переднего и заднего отрезка. Современные аппараты обладают обеими функциями, поэтому результаты диагностики можно получить более расширенные. ОКТ глаза часто делается пациентам после операции по удалению глаукомы. Метод детально показывает эффективность терапии в послеоперационный период, тогда как электротомография, офтальмоскопирование, биомикроскопия, МРТ или КТ глаза не в состоянии предоставить данные такой точности.

Плюсы процедуры

ОКТ сетчатки глаза может назначаться пациентам в любом возрасте.

Процедура бесконтактная, безболезненная и в то же время максимально информативная. Во время сканирования на пациента не воздействует радиационное излучение, так как в процессе обследования применяются свойства инфракрасных лучей, которые для глаз абсолютно безвредны. Томография позволяет диагностировать патологические изменения сетчатки даже на начальных стадиях развития, что существенно увеличивает шансы на успешное излечение и быстрое восстановление.

Как проходит подготовка?


Некоторые препараты в подготовительном периоде запрещены.

Ограничений в еде и питье перед проведением процедуры нет. Накануне исследования нельзя употреблять алкоголь и другие запрещенные вещества, еще врач может попросить перестать применять медикаментозные средства некоторых групп. За несколько минут до исследования в глаза закапывают капли, расширяющие зрачок. Пациенту важно сконцентрировать взгляд на мигающей точке, расположенной в линзе фокус-камеры. Моргать, разговаривать и двигать головой запрещено.

Как делается ОКТ?

Оптическая когерентная томография сетчатки длится в среднем до 10 мин. Пациента размещают в положении сидя, томограф с оптической камерой устанавливают на расстоянии 9 мм от глаза. Когда оптимальная видимость будет достигнута, камера фиксируется, далее врач регулирует изображение, чтобы получить максимально точный снимок. Когда картинка станет точной, выполняется серия снимков.

Готовый результат обследования может иметь вид карты.

  • наличие или отсутствие изменений внешних глазных структур;
  • взаиморасположение слоев глазного яблока;
  • наличие патологических образований и включений;
  • пониженная или повышенная прозрачность тканей;
  • толщина изучаемых структур;
  • размеры и наличие деформаций на исследуемой поверхности.

Расшифровка томограммы представлена в виде таблицы, карты либо протокола, которые могут максимально точно показать состояние исследуемых участков зрительной системы и установить точный диагноз даже на ранних стадиях. При необходимости врач может назначить повторное исследование ОКТ это позволит проследить динамику прогрессирования патологии, а также эффективность лечебного процесса.