Дарвин Дж. Прокоп (Darwin J . Prockop )

Наследственные болезни соединительной ткани относятся к наиболее распро­страненным генетическим синдромам. К ним относят чаще всего несовершенный остеогенез, синдромы Элерса -Данло и Марфана.

Классификация этих синдромов основывается обычно на результатах работы McKusick, который проанализировал признаки, симптомы и морфологические изменения у большого числа больных. Однако классификация осложняется гете­рогенностью этих синдромов. У больных, членов некоторых семей, отсутствует, например, один или несколько кардинальных признаков. В других семьях выяв­ляют больных с двумя или тремя разными синдромами. Гетерогенность может быть обнаружена и среди членов одной семьи. Например, у одних больных в семье определяется дислокация суставов, характерная для синдрома Элерса-Данло, у других - хрупкость костей, типичная для несовершенного остеогенеза, а у третьих с тем же генным дефектом симптомы вообще отсутствуют. Из-за этих трудностей классификация, основанная на клинических данных, в конце концов, должна будет смениться классификацией, основанной на результатах анализа мо­лекулярных дефектов в отдельных генах.

Организация и химический состав соединительной ткани. Соединительная ткань (или ткани) имеет довольно расплывчатое определение: внеклеточные ком­поненты, служащие опорой и связывающие воедино клетки, органы и ткани. К со­единительным тканям относятся в основном кости, кожа, сухожилия, связки и хрящи. Они включают в себя такие кровеносные сосуды и синовиальные простран­ства и жидкости. На самом деле, соединительная ткань входит в состав всех органов и тканей в виде мембран и перегородок.

Соединительные ткани содержат большие количества жидкости в виде фильт­рата крови, в котором находится почти половина всего альбумина организма. Большинство соединительных тканей заполнены или окружены фибриллами или волокнами коллагена (табл.319-1) и содержат протеогликаны.

Различия соединительных тканей до некоторой степени обусловлены незначи­тельной вариабельностью размеров и ориентации коллагеновых фибрилл. В сухо­жилиях они собраны в толстые параллельные пучки, в коже расположены менее упорядочение. В костях фибриллы строго организуются вокруг гаверсовых каналов, ригидность этой архитектуре придает гидроксиапатит. Основной коллаген сухо­жилий, кожи и костей (коллаген I типа) состоит из двух полипептидных цепей, продуктов разных структурных генов. Различия между перечисленными тканями в большой мере связаны с разной экспрессией структурных генов коллагена I типа, т. е. с разными количеством синтезируемого коллагена, толщиной и длиной обра­зующихся фибрилл и их расположением.

Некоторые различия между соединительными тканями обусловлены путст­вием ткане- или органоспецифических генных продуктов. Кости содержат белки, играющие важнейшую роль в минерализации коллагена, аорта - эластин и сопут­ствующий микрофибриллярный белок, несколько типов коллагена и другие компо­ненты. Базальная мембрана, лежащая под всеми эпителиальными и эндотелиаль­ными клетками, содержит коллаген IV типа и другие тканеспецифические макро­молекулы, а кожа и некоторые другие соединительные ткани -небольшие коли­чества особых видов коллагена.

Таблица 319-1. Состав соединительной ткани в разных органах

Известные компоненты

Примерное количество, % сухой массы

Свойства

Кожа (дерма), связки, сухо­жилия

Коллаген I типа

Пучки волокон с высоким пределом прочности при растяжении

Коллаген III типа

Тонкие фибриллы

Коллаген IV типа, лами­нин, энтактин, нидоген

В базальной мембране под эпителием и в кровенос­ных сосудах

Коллаген V-VII типов

Распределение и функции неясны

Фибронектин

Связан с коллагеновыми волокнами и клеточной поверхностью

Протеогликаны

Обеспечивают упругость

Гиалуронат

Обеспечивает упругость

Кость (демине-рализован-ная)

Коллаген1 типа

Сложная организация фибрилл

Коллаген V типа

Функция неясна

Протеогликаны

Сиалопротеины

Остеонектин

Роль в оссификации

Остеокальцин

Возможная роль в осси­фикации

а 2-Гликопроте ин

Коллаген I типа

Коллаген III типа

Тонкие фибриллы

Эластин, микрофибрил­лярный белок

Аморфное вещество, элас­тические фибриллы

Коллаген IV типа, лами­

В базальной мембране

нин, энтактин, нидоген

Коллаген V и VI типов

Функция неясна

Протеогликаны

Мукополисахариды, в ос­новном хондроитин­сульфат и дерматан-сульфат; гепарансуль­фат в базальной мемб­ране

Коллаген II типа

Тонкие фибриллы

Коллаген IX и Х типов

Возможная роль в созре­вании

Протеогликаны

Обеспечивают упругость

Гиалуронат

Обеспечивает упругость

Протеогликановые структуры изучены недостаточно. Установлено примерно пять белковых ядер, и к каждому поединен один вид мукополисахаридов или несколько. К основным мукополисахаридам кожи и сухожилий относятся дерматансульфат и хондроитин-4-сульфат, аорты - хондроитин-4-сульфат и дерматан-сульфат, хряща - хондроитин-4-сульфат, хондроитин-6-сульфат и кератансульфат. Базальная мембрана содержит гепарансульфат.

Биосинтез соединительной ткани. Синтез соединительных тканей заключается в самосборке из молекулярных субъединиц с точными размерами, формой и по­верхностными свойствами. Молекула коллагена представляет собой длинный тонкий стержень, состоящий из трех а-полипептидных цепей, скрученных в жесткую, похожую на канат структуру (319-1). Каждая a-цепь состоит из простых повторяющихся аминокислотных последовательностей, в которых каждый третий остаток представлен глицином (Гли). Поскольку каждая a-цепь содержит около 1000 аминокислотных остатков, ее аминокислотную последовательность можно обозначить как (-Гли-Х-У-)ззз, где Х и Y-любые аминокислоты, кроме глицина. Тот факт, что каждый третий остаток - это глицин (самая малая аминокислота), весьма важен, так как он должен входить в стерически ограниченное пространство, в котором сходятся все три нити тройной спирали. Две a-цепи в коллагене I типа одинаковы и называются a1(1). Третья же имеет несколько другую аминокислот­ную последовательность и называется a2(1). Некоторые типы коллагена состоят из трех одинаковых a-цепей. Те участки a-цепей, в которых на месте Х находится пролин или на месте Y - гидроксипролин, придают жесткость всей молекуле кол­лагена и удерживают ее в форме тройной спирали. Гидрофобные и заряженные аминокислоты в положениях Х и Y имеют вид кластеров на поверхности молекулы и определяют способ, которым одна молекула коллагена спонтанно связывается с другими, образуя цилиндрические фигуры, характерные для каждой коллагеновой фибриллы (319-1).

319-1. Схематическое изображение синтеза фибриллы коллагена I типа в фибробласте.

Внутриклеточные этапы сборки молекулы проколлагена (а): гидроксилирование и глико­зилирование про-а-цепей начинается вскоре после того, как их N-концы проникнут в цистерны шероховатой эндоплазматической сети, и продолжается после сближения С-пропептидов трех цепей и образования между ними дисульфидных связей. Расщепле­ние проколлагена с образованием коллагена, самосборка коллагеновых молекул в сво­бодно прилегающие друг к другу нити и перекрестное связывание их в фибриллы (б): отщепление пропептидов может происходить в криптах фибробласта или в некотором отдалении от клетки (воспроизведено с разрешения из ProckopandKivinkko).

Если структура и функция молекулы коллагена достаточно просты, то ее синтез весьма сложен (319-1). Белок синтезируется в виде предшест­венника, называемого проколлагеном, масса которого примерно в 1,5 раза больше массы молекулы коллагена. Эта разница обусловлена путствием в проколлагене дополнительных аминокислотных последовательностей как на N-, так и на С-конце. Для образования нитей коллагена необходимо действие специфической N-протеиназы, отщепляющей N-концевые пропептиды, и специфической С-протеиназы, отщепляющей С-концевые пропептиды. По мере сборки про-a-цепей коллагена на рибосомах эти цепи проникают в цистерны шероховатой эндоплазматической сети. Гидрофобные «сигнальные пептиды» на N-концах отщепляются, и начинается ряд дополнительных посттрансляционных реакций. Остатки пролина в позиции Yпод действием специфической гидроксилазы, требующей аскорбиновой кислоты, пре­вращаются в оксипролин. Другая гидроксилаза в путствии аскорбиновой кис­лоты точно так же гидроксилирует остатки лизина в позиции Y. Необходимость аскорбиновой кислоты для действия обеих гидроксилаз, вероятно, объясняет, поче­му при цинге не заживают раны (гл.76). Многие гидроксилизиновые остатки подвергаются дальнейшей модификации, гликолизируясь галактозой или галактозой и глюкозой. К С-концевым пропептидам каждой цепи поединяется крупный, богатый маннозой олигосахарид. С-концевые пропептиды сближаются, и между ними образуются дисульфидные связи. Когда в каждой про-a-цепй окажется при­мерно 100 гидропролиновых остатков, белок спонтанно сворачивается, приобретая конформацию тройной спирали. Свернувшись, белок под действием N- и С-протеиназ превращается в коллаген.

Фибриллы, образованные путем самосборки коллагеновой молекулы, обладают высоким пределом прочности при растяжении, и эта прочность еще более увели­чивается за счет перекрестных реакций с образованием ковалентных связей между a-цепями соседних молекул. Первый этап перекрестного связывания - окисление ферментом лизиноксидазой аминогрупп в остатках лизина и гидроксилизина с образованием альдегидов; последние затем и формируют прочные ковалентные связи друг с другом.

Коллагеновые фибриллы и волокна во всех тканях, кроме костной, стабильны на протяжении почти всей жизни и распадаются только при голодании или исто­щении тканей. Однако фибробласты, синовиальные и другие клетки способны продуцировать коллагеназы, расщепляющие коллагеновую молекулу в точке, от­стоящей от N-конца примерно на 3/4 длины молекулы, и тем самым запускают дальнейшее разрушение коллагеновых фибрилл и волокон другими протеиназами. В костях же непрерывно происходят разрушение и ресинтез коллагеновых фибрилл, что служит необходимым условием перестройки кости. Таким образом, для сборки и сохранения коллагеновых фибрилл в тканях требуется координированная экспрес­сия ряда генов, продукты которых необходимы для посттрансляционного формиро­вания этих фибрилл или участвуют в метаболизме коллагена.

Сборка фибрилл коллагена I типа аналогична сборке фибрилл коллагена II типа в хряще и коллагена III типа в аорте и коже. При формировании же нефиб­риллярных коллагенов, таких как тип IV в базальных мембранах, не происходит отщепления глобулярных доменов на концах молекул. Сохраняясь, эти домены участвуют в самосборке мономеров в плотные сети. Волокна эластина компонуются тем же путем. Однако эластиновый мономер представляет собой одну полипеп­тидную цепь без четкой трехмерной структуры, самообразующую аморфные элас­тические волокна.

Синтез протеогликанов сходен с синтезом коллагена в том отношении, что он начинается со сборки полипептидной цепи, называемой белковым ядром. В цис­тернах шероховатой эндоплазматической сети белковое ядро модифицируется путем поединения остатков Сахаров и сульфата, которые образуют крупные мукополисахаридные боковые цепи. После секреции во внеклеточное пространство белковое ядро с его мукополисахаридными боковыми цепями связывается с соеди­няющим белком, а затем с длинноцепочечной гиалуроновой кислотой, образуя зрелый протеогликан с относительной молекулярной массой в несколько миллионов.

Построение кости следует тем же самым принципам, что и сборка других соединительных тканей (также гл.335). Первый этап заключается в отложении остеоидной ткани, которая состоит в основном из коллагена I типа (319-1). Далее, «еще не до конца выясненным путем происходит минерализация остеоидной ткани; особые белки, такие как остеонектин, связываются со специфическими участками коллагеновых фибрилл и затем хелируют кальций, начиная минерали­зацию.

Значение для наследственных болезней. Наше знание химии и биохимии соединительных тканей недостаточно полно, но тем не менее позволяет понять некоторые клинические особенности наследственных болезней этих тканей. Напри­мер, понятно, почему многие из этих болезней имеют системные проявления. Поскольку весь коллаген I типа синтезируется на одних и тех же двух структурных генах, любая мутация этих генов должна экспрессироваться во всех тканях, содер­жащих коллаген I типа. Тканевая или органная специфичность болезни может быть объяснена двояко. Один из механизмов может заключаться в том, что бо­лезнь вызывается мутацией гена, экспрессирующегося только в одной или двух соединительных тканях. Например, у больных с синдромом Элерса - Данло IV типа имеются мутации генов проколлагена III типа, и его проявления ограничены изме­нениями кожи, аорты и кишечника, т. е. тканей, богатых коллагеном III типа. Вто­рая причина тканевой специфичности болезней более тонка. Разные участки моле­кул коллагена выполняют разные биологические функции. Так, если речь идет о коллагене I типа, то отщепление N-концевых пропептидов необходимо для сборки крупных коллагеновых фибрилл и волокон в связках и сухожилиях. При неполном отщеплении N-пропептидов белок образует тонкие фибриллы. Следовательно, боль­ные с такими мутациями генов проколлагена I типа, препятствующих эффектив­ному отщеплению N-пропептидов, должны страдать преимущественно дислокацией бедренных и других крупных суставов. У них редко бывают переломы, поскольку формирование толстых фибрилл коллагена I типа, по-видимому, менее важно для нормальной функции костей, чем для нормальной функции суставных связок. Наоборот, у больных с мутациями, затрагивающими структуру других участков молекулы проколлагена I типа, может преобладать костная патология.

Современные данные о химии матрикса позволяют понять причины гетеро­генности симптоматики и у больных с одинаковыми генными дефектами. Экспрес­сия гена коллагена или протеогликана зависит от координированной экспрессии генов ферментов, принимающих участие в посттрансляционной модификации этих соединений, а также от экспрессии генов других компонентов того же матрикса. В связи с этим конечное влияние этой мутации на функциональные свойства такой сложной структуры, как кость или крупный кровеносный сосуд, зависит от различий в «генетическом фоне» разных лиц, а именно от различий в экспрессии.большого семейства других генов, продукты которых влияют на ту же структуру. Клинические проявления болезни должны зависеть и от других факторов, влияю­щих на соединительную ткань, таких как физическая нагрузка, травмы, питание и гормональные аномалии. Следовательно, имеется широкая основа для вариабель­ности клинических проявлений у больных с одним и тем же дефектом.

Выявление молекулярных дефектов. Для того чтобы выявить молекулярный дефект у больного с наследственной болезнью соединительной ткани, требуются большие усилия (319-2). Одна из причин этого заключается в том, что у двух не состоящих в родственной связи больных, даже с идентичными клиническими симптомами, молекулярные дефекты различны. Вторая причина сводится к тому, что белки и протеогликаны соединительной ткани представляют собой крупные молекулы, которые трудно перевести в раствор и получить в чистом виде. Кроме того, у больных дефект определяет синтез аномального, быстро распадающегося белка. В связи с этим при анализе тканей трудно установить, какой именно генный продукт аномален. Третья причина - большие размеры генов компонентов матрикса. В случае проколлагена I типа ген про-al (1)-цепи состоит из 18 000 пар осно­ваний, а ген про-а2(1)-цепи - из 38000 пар. Каждый из этих генов имеет при­мерно 50 экзонов, большинство которых сходны по структуре. С помощью доступ­ной в настоящее время техники рекомбинантной ДНК выяснение места мутации одного или нескольких оснований - задача неимоверной трудности. Однако новые методы позволяют, вероятно, преодолеть большинство этих проблем.

Несовершенный остеогенез

Общие проявления. Термином «несовершенный остеогенез» обозначают наслед­ственные аномалии, обусловливающие хрупкость костей (319-3). Диагноз уста

319-2.Приблизительная локализация мутаций в структуре проколлагена I типа.

Римскими цифрами обозначен конкретный тип синдрома Элерса -Данло (СЭД) или несовершенного остеогенеза (НО), обсуждаемых в тексте. Экзоны, в которых происходят специфические делеции, пронумерованы в направлении от 3- к 5-концу гена. Другие делеции обозначены примерным числом утраченных аминокислот; «аа 988» означает, что остаток глицина в положении 988 a 1 -цепизамещен цистеином. Как сообщалось в тексте, мутация про-a 2 1 означает вставку 38 пар оснований в дополнительную последователь­ность и обнаружена у больных с атипичным синдромом Марфана (СМ); про-a2^ looaas означает делецию примерно 100 аминокислот при a-варианте несовершенного остео­генеза II типа.

Про-a^-мутация, ведущая к укорочению npo-al-цепи; про-(^-мутация, ведущая к укорочению ^1ро-а2-цепи; про-а!^ 5 -мутация, ведущая к появлению цистеинового остатка;пpo-a: ~ ma " -мутация, ведущая к избыточному содержанию маннозы в одной или обеих про-а-цепях; про-а2"- неизвестная структурная мутация, препятствующая расщеплению цепи N-протеиназой; про-а2 1 - мутация, ведущая к удлинению про-а2-цепи; про-с^ 0 "- мутация, меняющая структуру С-концевого пропептида про-а2-цепи (модифи­цировано и воспроизведено с разрешения из ProckopandKivirikko).

319-3.Мальчик в возрасте 21 мес с несовершенным остеогенезом III типа. Ребенок страдает множественными переломами рук и ног. Он гомозиготен по делеции 4 пар оснований в генах про-а2(1)-цепей, что привело к изменению последовательности последних 33 аминокислот в этих белках. В связи с этим про-а2(1)-цепи не сомкнулись с про-а1 (I) -цепями, и единственной формой проколлагенов I типа оказались тримеры про-al (I) -цепей, в которых С-концевые участки остались нескрученными (воспроизве- навливают путем исключения других наследственных дефектов или влияний фак­торов окружающей среды, вызывающих остеопению или остеопороз, и выявления последствий мутации в нескольких видах соединительной ткани. Повышенная лом­кость костей сопровождается обычно такими признаками, как голубой цвет склер, глухота, нарушение прорезывания зубов. Эти признаки могут определяться по отдельности или вместе (табл.319-2). Для того чтобы установить диагноз в раннем детстве, достаточно выявить сочетание голубого цвета склер и переломов. Точно так же достаточно определить сочетание переломов с характерными аномалиями зубов (несовершенный дентиногенез). Некоторые специалисты диагностическое значение придают сочетанию ломкости костей с наступившей рано глухотой у больного или членов его семьи, тогда как другие ставят диагноз только на осно­вании хрупкости костей, которую нельзя связать с внешними факторами (такие, как малая физическая активность или сниженное питание) или с другими наслед­ственными синдромами, например дисплазиями скелета (табл.319-3). Поскольку у некоторых членов семей переломов не бывает до наступления постменопаузы, легкие формы болезни могут быть неотличимы от постменопаузального остео­пороза. Некоторые лица с остеопорозом могут быть гетерозиготными носителями генных дефектов, вызывающих у гомозигот несовершенный остеогенез. В связи с этим целесообразно отнести постменопаузальный остеопороз в спектр тех же болезней, к которым относится несовершенный остеогенез.

Для классификации несовершенного остеогенеза пользуются классификацией, предложенной Sillence (табл.319-2). Тип I встречается с частотой примерно 1:30 000. Он представляет собой легкую или средней тяжести болезнь, наследуемую как аутосомный доминантный признак в сочетании с голубыми склерами. Наиболее тяжело протекает болезнь II типа. Типы III и IV по тяжести занимают промежу­точное положение между типами I и II.

Аномалии скелета. При I типе болезни ломкость костей может быть столы выраженной, что ограничивает физическую активность больного, или столь незна­чительной, что больной вообще не испытывает никаких неудобств. При II типе кости и другие виды соединительной ткани настолько хрупки, что смерть насту­пает еще в утробном периоде, в родах или в первые несколько недель после рож­дения ребенка. При болезни III и IV типов множественные переломы, возникающие даже при минимальных физических воздействиях, могут привести к остановке роста и костным уродствам. У многих больных переломы особенно часто возникают в детстве; после периода пубертата их частота уменьшается, а при беременности и после наступления менопаузы вновь увеличивается. Резкий кифосколиоз может быть причиной нарушений дыхания и предрасполагать к легочным инфекциям. Плотность костей снижена, но относительно специфических морфологических нарушений мнения расходятся. Общее впечатление таково, что заживление переломов происходит нормально. У некоторых больных со сравнительно легкой симп­томатикой череп имеет множество вмятин, по-видимому, из-за небольших очажков оссификации.

Таблица 319-2.Классификация несовершенного остеогенеза, основанная на клинических проявлениях и способе наследования (по Sillence)

Ломкость костей

Голубые склеры

Аномалии зубов

Наследова­ние

Легкая сте­пень

Определяют­ся

Отсутствуют при IA, определя­ются при 1Б

В некоторых случаях

Резко выра­женная

В некоторых случаях

Неизвестно

Л. Г НЛп ^-

Выраженная

Голубоватый цвет при рождении

Вариабельная

Не определя­ются

Отсутствуют при IVA, выявля­ются при ГУБ

Примечание. АД - аутосомное доминантное; АР - аутосомное рецессивное; С - спорадическое.

Таблица 319-3.Частичная дифференциальная диагностика несовершенного остеогенеза

Возраст При рождении

Диагноз Гипофосфатазия

Отличительные признаки

Отсутствие минерализации кос­тей черепа

Ахондрогенез

Отсутствие минерализации по­звонков

Танатоформная карликовость Вызывающая асфиксию дистро­фия грудной клетки

Н-образные позвонки Цилиндрическая форма грудной клетки

Ахондроплазия

Крупная голова, короткие труб­чатые кости

Младенчество

Синдром детских ушибов

Чаще переломы костей черепа и ребер

Цинга Врожденный сифилис

Идиопатический ювенильный остеогенез

В препубертатный период, спон­танно купирующийся

Гомоцистинурия

Марфаноидный внешний вид и отсталость психического раз­вития

Детская диарея Опухоль коры надпочечников Лечение кортикостероидами

Стеаторея, анемия

Источник: модифицировано из Smithetal., с.126.

Глазные симптомы. Цвет склер варьирует от нормального до слегка голубова­того или от синевато-серого до ярко-голубого. Голубизна обусловлена истончением или прозрачностью коллагеновых волокон склеры, через которые просвечивает сосудистая оболочка глаза. У ряда больных выявляют и другие глазные симптомы. В некоторых семьях голубые склеры могут быть наследственным признаком без всякого увеличения хрупкости костей.

Несовершенный дентиногенез. Эмаль твердой зубной пластинки относительно нормальна, но зубы имеют янтарный, желтовато-коричневый или полупрозрачный голубовато-серый цвет из-за неправильного отложения дентина. Молочные зубы обычно мельче нормальных, а постоянные заострены и как бы имеют основание. Точно такие же аномалии зубов могут наследоваться независимо от несовершенного остеогенеза.

Глухота. В возрасте после 10 лет или позднее развивается глухота. Она обус­ловлена нарушением прохождения колебаний через среднее ухо на уровне основа­ния стремени. При гистологическом исследовании обнаруживают недостаточную оссификацию, персистенцию хрящевых участков, которые в норме оссифицируются, и полоски скопления кальция.

Сопутствующие проявления. У многих больных и у членов многих семей выявляют аномалии и в других видах соединительной ткани. В некоторых случаях отмечают изменения кожи и суставов, неотличимые, от таковых при синдроме Элерса -Данло (далее). У небольшого числа больных выявляют нарушение функции сердечно-сосудистой системы, например регургитацию аортальных клапа­нов, пролабирование митральных, митральную недостаточность и хрупкость стенок крупных кровеносных сосудов. Могут иметь место гиперметаболизм с повышением уровня тироксина в сыворотке, гипертермия и чрезмерная потливость. При легких формах болезни сопутствующие симптомы могут выступать на первый план.

Способ наследования. Тип I болезни наследуется как аутосомный доминантный признак с непостоянной экспрессией, так что он может проявляться через поко­ление. При летальном варианте II типа наследование может быть аутосомным рецессивным, но в нескольких случаях II типа с выясненным генетическим дефек­том имелись новые мутации. Способ наследования - основной критерий разграни­чения III и IV типов (табл.319-2), но отличить рецессивно наследуемую форму от новой аутосомной доминантной мутации иногда очень трудно.

Молекулярные дефекты. Поскольку большинство тканей при несовершенном остеогенезе богато коллагеном I типа, считают, что многие его формы связаны с мутациями структурных генов этого белка, генов, определяющих его посттрансля­ционный процессинг, или генов, регулирующих его экспрессию. В настоящее время выяснены мутации генов проколлагена I типа при четырех вариантах II типа несо­вершенного остеогенеза. Один вариант характеризовался делецией в одном из алле­лей гена про-al (I) (319-4). Она распространялась на три экзона, но не препят­ствовала транскрипции гена. В результате про-al (I)-цепь оказалась на 84 амино­кислоты короче, чем в норме. Эта мутация была летальной, поскольку укороченная про-al (I)-цепь связывалась с нормальной про-al (I)- и про-а2(1)-цепями (319-4). Укорочение про-al (I)-цепи препятствовало скручиванию молекул в тройную спираль. В связи с этим большая часть проколлагеновых молекул оста­валась нескрученной и быстро распадалась в процессе, называемом самоубийством белка, или негативной комплементарностью (319-4). При втором летальном варианте болезни II типа мутация привела к синтезу такой про-а2(1)-цепи, которая была примерно на 20 аминокислот короче по сравнению с нормой. Второй аллель не функционировал, поэтому все про-а2-цепи оказались укороченными. При третьем варианте II типа мутационная делеция в аллеле про-а2(1)-цепи укоротила синте­зируемую про-а2-цепь примерно на 100 аминокислот. При четвертом варианте II типа происходило замещение одного основания, что привело к появлению в a1(1)-цепи остатка цистеина вместо глицина и тем самым к разрыву трехспираль­ной конформации белка.

Мутации генов проколлагена I типа выяснены также при двух вариантах бо­лезни III типа. При одном из них была определена делеция четырех пар оснований, что изменило последовательность последних 33 аминокислот в про-а2(1)-цепи. Больной был гомозиготен по этому дефекту, и ни одна из про-а2(1)-цепей не включалась в молекулы проколлагена. Вместо этого проколлаген I типа состоял из тримера про-al (I)-цепей. Этот тример имел трехспиральную конфигурацию, но был нестабильным. Родители больного, находившиеся друг с другом в троюродном родстве, были гетерозиготами по той же мутации и уже в возрасте 30 лет страдали остеопорозом. При другом варианте III типа структурные изменения в С-концевом пропептиде обусловили увеличение количества в нем маннозы. У больного с некото­рыми симптомами болезни I типа и другими, типичными для болезни II типа, про-а2(1)-цепи были укорочены примерно на 100 аминокислот.

На основании этих данных можно сделать ряд обобщений в отношении мута­ций генов коллагена. Одно из них сводится к тому, что мутация, ведущая к синтезу аномального белка, может быть более вредной, чем нефункционирующий аллель. Второе заключается в том, что мутации, обусловливающие укорочение полипептид­ных цепей, могут быть более частыми, чем другие. Однако у большинства больных молекулярные дефекты не идентифицированы. У многих из них могли иметь место мутации сплайсинга РНК или мутации по единичным основаниям, которые трудно обнаружить в столь крупных генах, как ген проколлагена I типа. Ряд вариантов несовершенного остеогенеза мог бы обусловливаться мутациями других генов, экспрессия которых необходима для сборки и сохранения структуры костей и дру­гих видов соединительной ткани.

Диагностика. В отсутствие кардинальных признаков болезни диагноз уста­новить трудно, и многие случаи, вероятно, остаются недиагностированными. Сле­дует учитывать возможность других патологических состояний, сопровождающихся хрупкостью костей в младенчестве и детстве (табл.319-3). У 1/3 больных при электрофорезе проколлагена I типа (синтезируемый фибробластами кожи в куль­туре) в полиакриламидном геле можно обнаружить аномальную про-a-цепь. В боль­шинстве случаев изменение подвижности отражает посттрансляционную модифи­кацию и не позволяет определить точную природу мутации или тип болезни.

Лечение. Убедительные данные о возможности эффективного лечения отсут­ствуют. При легкой форме после уменьшения частоты переломов в возрасте 15- 20 лет больные могут и не нуждаться в лечении, но во время беременности или после наступления менопаузы, когда частота переломов снова увеличивается, к ним требуется особое внимание. При более тяжелых формах детям необходимы широ­кая программа физиотерапии, хирургическое лечение при переломах и. деформациях скелета, профессиональное обучение и эмоциональная поддержка как больному, так и его родителям. У многих больных интеллект достаточно развит, и они, несмотря на выраженные деформации, делают успешную карьеру. Целесообразно использовать программу поддержания позы, разработанную Bleck. При многих пе­реломах лишь минимально смещаются кости и происходит некоторый отек мягких тканей, поэтому требуется лишь слабое вытяжение в течение 1-2 нед с последую­щим наложением легкой шины. При малоболезненных переломах необходимо рано начинать физиотерапию. В отношении целесообразности коррекции деформаций конечностей с помощью стального гвоздя, помещаемого в длинные кости, мнения противоречивы. Оправданием этой процедуры может служить то обстоятельство, что коррекция деформаций в детстве дает возможность взрослым больным нор­мально ходить.

319-4. Схематическое изображение молекулярного дефекта при несовершенном остеогенезе II типа. а: схематическое изображение генной делеции. Как упоминалось в тексте, у человека ген про-а1(1) состоит из 18000 пар оснований и содержит около 50 экзонов (вертикальные темные черточки). Делеция захватила три экзона, содержащих 252 пары оснований кодирующих последовательностей, б: схема «самоубийства белка», или негативной компле­ментарности. Синтезированные укороченные про-al (1)-цепи соединились и связались ди­сульфидными мостиками с интактными npo-a(I)-цепями. Молекулы проколлагена, содержа­щие одну или две укороченные про-al (I)-цепи, не скручивались в тройную спираль при 37 °С и разрушались. В результате при спорадическом гомозиготном дефекте количество функционирующего проколлагена было уменьшено примерно на 75 % (модифицировано и воспроизведено с разрешения из ProckopandKivirikko).

Генетическое консультирование при II, III и IV типах болезни затруднено из-за неясности способа наследования. С помощью рентгене- и эхографии несо­вершенный остеогенез удавалось диагностировать у плода уже на 20-й неделе бере­менности. В тех немногих семьях, где точно выяснен генный дефект, для прена­тальной диагностики можно было бы производить анализ ДНК в соответствующих лабораториях. Для генов проколлагена I типа идентифицирован полиморфизм длины рестрикционных фрагментов, и этот подход можно было бы использовать для пренатальной диагностики. Культура клеток амниотической жидкости синтези­рует коллаген, но применять эти культуры для выявления мутаций представляется нереальным.

Синдром Элерса -Данло

Общие проявления. Под названием «синдром Элерса -Данло» объединяют группу наследственных аномалий с повышенной подвижностью суставов и кож­ными проявлениями (319-5). Beightonвначале разделил этот синдром на пять типов (табл.314-4). Тип I- это классическая тяжелая форма болезни, при кото­рой отмечаются как чрезмерная подвижность суставов, так и типичная бархатистая и чрезмерно растяжимая кожа. Тип II сходен с I типом, но симптомы выраже­ны слабее. При III типе чрезмерная подвижность суставов более выражена, чем изменения кожи. Тип IV характеризуется резким истончением кожи и частой внезапной смертью из-за разрыва крупных кровеносных сосудов или внутренних органов. Тип V сходен с типом II, но наследуется как сцепленный с Х-хромосомой признак.

319-5.Схематическое изображение кожных и суставных изменений при синдроме Элерса-Данло (СЭД).

Девочка (справа вверху) страдает СЭД IVBтипа с дислокацией обоих бедер, не под­дающейся хирургической коррекции [воспроизведено с разрешения из ProckopandGuzman, Hosp. Prac.,1977, 12(12):б1].

Таблица 319-4.Классификация больных с синдромом Элерса -Данло, основанная на клинических проявлениях и способе наследования

Чрезмерная подвижность суставов

Растяжимость кожи

Хрупкость

Склонность к кровопод­текам

Другие проявления

Тип на­следования 2

Выражена

Выражена

Выражена

Выражена

Мягкая, бархатистая кожа; рубцы как папи­росная бумага; грыжи; варикозно^расши-ренные вены; преждевременные роды из-за разрыва плодных оболочек

Умеренная

Умеренная

Отсутствует

Умеренная

Менее выражены, чем при I типе

Выражена

Минимально увеличена

Минимальная

Минимальная

Дислокация суставов с минимальными изме­нениями кожи

Только мелких суставов

Выражена

Выражена

Разрыв крупных артерий и внутренних орга­нов; тонкая кожа с выраженной венозной сетью; иногда характерные черты лица

АД или АР

Умеренная

Умеренная

Отсутствует

Умеренная

Сходные с таковыми при II типе

Минимально выражена

Умеренная

Сходные с таковыми при II типе; у некоторых больных внутримышечные кровоизлияния или кератоконус

Выражена

Множественные дислокации суставов

АР или АД

Умеренная

Выражена

Выраженный периодонтит; атрофические пиг­ментированные рубцы на коже

Незначительно выражена

Незначитель­ная

Отсутствует

Отсутствует

Дивертикулы мочевого пузыря со спонтан­ным разрывом; грыжи; костные аномалии; дряблость кожи

Альтернативные названия: тип I - злокачественный, тип II - легкий, тип III- доброкачественная семейная чрезмерная подвиж­ность суставов, тип IV - с кровоподтеками или аортальный, тип V - сцепленный с Х-хромосомой, тип VI - глазной, тип VII - врожденный множественный артрохалоз, тип VIII-периодонтальная форма, тип IX-синдром Элерса -Данло с нарушением метаболизма меди, синдром Менкеса (некоторые варианты) и дряблость кожи (некоторые варианты).

2 АД - аутосомное доминантное, АР - аутосомное рецессивное, Х - сцепленное с Х-хромосомой.

Впоследствии были выделены дополнительные типы (VI, VII и IX) с биохими­ческими нарушениями и фенотипами, не соответствующими типам, описанным Beighton. Однако не у всех больных с этими фенотипами были выявлены моле­кулярные дефекты, которые легли в основу классификации. Тип VII идентифи­цируется по генерализованному периодонтиту наряду с умеренными изменениями суставов и кожи. Многие больные и члены их семей не могут быть отнесены к боль­ным ни одного из девяти упомянутых типов синдрома.

Изменения связок и суставов. Степень «разболтанности» и сверхподвижности суставов может варьировать от легкой до столь тяжелой, что сопровождается резкими невправимыми вывихами костей в тазобедренных и других суставах. При менее тяжелых формах больные могут сами вправлять вывихи или избегают их, ограничивая физическую активность. С возрастом у некоторых больных симпто­матика усиливается, но в целом выраженная «разболтанность» суставов не умень­шает продолжительности жизни.

Кожа. Изменения кожи варьируют от некоторого ее истончения, мягкости и бархатистости до чрезмерной растяжимости и непрочности. Для больных с неко­торыми типами синдрома характерны кровоподтеки. При IV типе через тонкую кожу просвечивают подкожные сосуды, при I типе при малейшей травме могут появляться полупрозрачные рубцы («папиросная бумага»). Сходные, но слабее выраженные признаки нарушенного заживления кожных травм имеются при других формах, особенно при V типе. У больных с VIII типом синдрома кожа отличается скорее хрупкостью, нежели растяжимостью, а раны на ней заживают, оставляя атрофические пигментированные рубцы.

Сопутствующие изменения. Помимо изменений суставов и кожи, у больных, особенно при I типе синдрома, может пролабировать митральный кла­пан сердца. Часто отмечаются плоскостопие и легкая степень или умеренно выра­женный сколиоз. Выраженная «разболтанность» суставов с повторными вывихами может приводить к раннему остеоартриту. При I и IX типах нередко образуются грыжи, при IV типе могут быть спонтанные разрывы аорты и кишечника. При VI типе малейшие травмы глаз часто приводят к разрыву их оболочек, а кифо­сколиоз вызывает нарушение дыхания. При этом типе у больного склеры нередко имеют голубой цвет. При IX типе изменения суставов и кожи минимальны. Этот тип идентифицируется главным образом по нарушению обмена меди и включает состояния, ранее называвшиеся синдромом дряблости кожи (cutislaxa), наследуе­мым как признак, сцепленный с Х-хромосомой, сцепленным с Х-хромосомой синд­ромом Элерса -Данло и синдромом Менкеса. У больных часто образуются склонные к разрыву дивертикулы мочевого пузыря, грыжи и аномалии скелета, в том числе характерные затылочные «рога», а также дряблость кожи. При ва­рианте, ранее обозначаемом как cutis laxa, именно дряблость кожи служит ведущим симптомом, придавая больным вид преждевременно состарившихся лиц. У них часто развиваются эмфизема легких и стеноз легочной артерии.

Молекулярные дефекты. При синдроме I, II и III типов молекулярные дефекты неизвестны. При электронной микроскопии кожи некоторых больных можно видеть необычное строение коллагеновых волокон, но аналогичные фибриллы иногда вы­являют и в коже здорового человека.

У больных с IV типом болезни, по-видимому, имеется дефект синтеза или структуры коллагена III типа. Это согласуется с тем, что они склонны к спонтанным перфорациям аорты и кишечника, т. е. тканей, богатых коллагеном III типа. При одном из вариантов IV типа дефект заключается в синтезе структурно аномальных про-a (III)-цепей. Они входят в молекулу проколлагена III типа в равных стехио­метрических соотношениях с нормальными про-a (III)-цепями, так что большинство молекул проколлагена III типа содержит одну или несколько аномальных про-a (III)-цепей. Эти молекулы подвергаются «самоубийству», или отрицательной комплементарности, и поэтому кожа практически не содержит коллагена III типа. При других вариантах IV типа нарушены синтез или секреция проколлагена III типа.

Синдром Элерса -Данло VI типа впервые был идентифицирован у двух сес­тер на том основании, что их коллаген содержал меньшее, чем в норме, количество гидроксилизина из-за недостаточности лизилгидроксилазы; недостаточность того же фермента была обнаружена и у других больных. Однако у некоторых больных с клинической картиной VI типа синдрома недостаточность лизилгидроксилазы не выявляется.

Синдром VII типа впервые был выделен как дефект превращения проколла­гена в коллаген у больных с чрезмерной подвижностью суставов и вывихами. Это состояние на молекулярном уровне обусловлено двумя видами генетических нару­шений. При одном из них (тип VIIA) имеется недостаточность проколлагена-про­теиназы - фермента, отщепляющего N-концевой пептид от проколлагена I типа. Эта форма болезни наследуется как аутосомный рецессивный признак. Вторая форма (VIIБ) характеризуется рядом мутаций, придающих проколлагену I типа устойчивость к действию N-протеиназы. Для активности фермента необходима нативная конформация белкового субстрата, и на проколлаген I типа с измененной конформацией он не действует. Изменение аминокислотной последовательности в про-a-цепях проколлагена I типа может локализоваться на участке, отстоящем от места действия фермента на целых 90 аминокислот. При том и другом варианте (VIIA и VIIB)VII типа сохранение N-пропептида в молекуле приводит к образо­ванию чрезвычайно тонких фибрилл. Как уже отмечалось, эти тонкие фибриллы могут участвовать в построении костей, но не обеспечивают необходимой прочно­сти связкам и суставным сумкам.

У большинства обследованных больных с IX типом синдрома нарушен мета­болизм меди (гл.77). Низкий уровень меди и церулоплазмина в сыворотке сопровождается выраженным повышением уровня меди в клетках. Молекулярные дефекты у некоторых больных связаны, по-видимому, с синтезом диффундирующего фактора, принимающего участие в регуляции либо гена металлотионеина, либо каких-то других сторон метаболизма меди.

Диагностика. Диагностика все еще основывается на клинических признаках. Биохимические исследования для выявления известных нарушений до сих пор остаются очень трудоемкими и требующими больших затрат времени. При IV типе болезни инкубация культуры фибробластов кожи с радиоактивным пролином или глицином с последующим гель-электрофорезом новосинтезированных белков долж­на была бы обнаруживать нарушение синтеза или секреции проколлагена III типа. Для пренатальной диагностики этот подход в настоящее время неприменим. Исследование секреции и скорости процессинга проколлагена I типа в культуре фибробластов кожи дает в руки исследователей простой способ идентификации недостаточности проколлаген-N-протеиназы и структурных мутаций, препятствую­щих отщеплению N-концевого пропептида. Таким образом, этот способ мог бы оказаться полезным в диагностике VIIA и VIIБ вариантов VII типа синдрома. Однако положительные результаты анализа получают при обследовании и некото­рых больных с несовершенным остеогенезом. При подозрении на синдром Элерса - Данло IX типа подтвердить диагноз можно путем определения уровня меди и церулоплазмина в сыворотке и культуре фибробластов. Вскоре можно ожидать применения анализа специфических ДНК при обследовании членов семей, у кото­рых точно установлены генные мутации, характерные для синдрома I типа. Вероят­но, в семьях с тяжелыми формами синдрома для пренатальной диагностики будет применяться и метод исследования полиморфизма длины рестрикционных фраг­ментов (также гл.58).

Лечение. Специфического лечения не разработано. Хирургическая кор­рекция и укрепление суставных связок требуют тщательного индивидуального под­хода, так как связки часто не держат швов. У всех больных, особенно при подо­зрении на IV тип, необходимо проверять состояние сердечно-сосудистой системы. При кровоподтеках определяют состояние свертывающей и антисвертывающей системы, но результаты этих исследований обычно не отличаются от нормы.

Синдром Марфана

Общие проявления. Синдром Марфана определяют по характерным измене­ниям трех видов соединительной ткани: скелета, глазной и сердечно-сосудистой (319-6). Синдром наследуется как аутосомный доминантный признак, причем 15-30 % его случаев приходится на свежие мутации. Относительно часто опреде­ляется «скачок через поколение», обусловленный непостоянной экспрессией. Кроме того, в некоторых семьях отдельные признаки (типичный «марфаноидный» вид, дислокация хрусталиков и нарушения кровообращения) могут наследоваться по­рознь. В связи с этим диагноз обычно не ставят до тех пор, пока хотя бы у одного члена семьи не выявят характерных изменений, по крайней мере в двух из трех соединительнотканных систем.

319-6. Мальчик в возрасте 16 лет с синдромом Марфана. Проявления синдрома включают дислокацию хрусталиков глаз, удлиненное тонкое лицо, длинные пальцы рук (арахнодактилия), длинные конечности (долихостеномелия) и вдав­ление грудины (pectusexcavatum) (любезно предоставлено J. G. Hall).

Аномалии скелета. Обычно рост больных выше, чем у родственников, руки и ноги у них заметно удлинены. Отношение верхней половины тела (от ма­кушки до лобка) к нижней (от лобка до ступни), как правило, на два стандартных отклонения ниже среднего для соответствующих возраста, пола и расовой принадлежности. Пальцы рук и ног обычно длинные и тонкие (арахнодактилия или долихостеномелия), но объективно это трудно доказать. Из-за увеличения длины ребер грудная клетка часто деформируется, образуя вдавление («грудь сапожни­ка») или выпячивание («куриная грудь»). Иногда грудная клетка явно симметрич­на. Обычно имеется сколиоз, часто с кифозом.

По подвижности суставов больных можно разделить на три группы. У боль­шинства из них отмечается умеренная сверхподвижность многих суставов. У неко­торых больных она выражена сильнее (как при синдроме Элерса -Данло), но у небольшого числа из них суставы тугоподвижны и имеются контрактуры рук и пальцев. Больные этой группы (контрактурная арахнодактилия), по-видимому, менее склонны к сердечно-сосудистым нарушениям.

Изменения сердечно-сосудистой системы. Обычно митральный клапан пролаби­рует, аорта расширена. Ее расширение начинается с корня и прогрессирует до расслаивающей аневризмы и разрыва. Для диагностики этих аномалий особенно полезна эхокардиография.

Глазные симптомы. Характерным признаком служит подвывих (эктопия) хрусталиков обычно по направлению вверх. Однако его можно обнаружить только при исследовании со щелевой лампой. Смещение хрусталиков в переднюю камеру глаза может вызвать глаукому, но она чаще развивается после удаления хруста­лика. Длина оси глазного яблока больше нормы, что предрасполагает к близору­кости и отслойке сетчатки.

Сопутствующие изменения. На коже плеча и ягодиц могут быть видны стрии. В остальном она остается неизмененной. У некоторых больных развивается спон­танный пневмоторакс. Часто имеют место высокие своды неба и стоп.

Диагностика. Легче всего установить диагноз, когда у больного или членов его семьи появляются объективные признаки подвывиха хрусталиков, расширения аорты и резкого кифосколиоза или деформаций грудной клетки. При эктопии хрусталиков и аневризме аорты диагноз ставят часто, даже если нет внешних «марфаноидных» признаков или семейного анамнеза. Всех больных с подозрением на этот синдром необходимо обследовать с помощью щелевой лампы и эхокардио­графии. Следует также исключить гомоцистинурию (табл.319-3) по отрица­тельным результатам цианиднитропруссидного теста на путствие дисульфидов в моче. Эктопия хрусталиков может произойти и у больных с синдромом Элерса - Данло I, II и III типов, но у них отсутствует марфаноидный вид и определяются характерные изменения кожи, отсутствующие при синдроме Марфана.

Лечение. Как и при других наследственных болезнях соединительной ткани, определенных средств лечения при синдроме Марфана не существует. Некоторые специалисты рекомендуют использовать пропранолол (анаприлин) с целью пре­дупредить тяжелые аортальные осложнения, но его эффективность не доказана. В ряде случаев проводилась хирургическая пластика аорты, аортального и мит­рального клапанов.

Сколиоз может прогрессировать, поэтому необходимы механическое укрепле­ние скелета и физиотерапия, если он превышает 20°,или хирургическое, если он продолжает прогрессировать и превышает 45°.Для индукции менархе у девочек с прогрессирующим сколиозом применяли эстрогены, но определенных результатов получить не удалось.

Подвывих хрусталиков редко требует их удаления, но больные должны нахо­диться под птальным наблюдением из-за возможности отслоения сетчатки.

При консультировании исходят из 50 % вероятности наследования аномаль­ного гена. Из-за гетерогенности болезни ее выраженность у потомства может быть и большей, и меньшей, чем у родителей. Женщин следует информировать о высо­ком ке сердечно-сосудистых нарушений при беременности.


Считается, что про здоровье человека и даже про характер может рассказать его внешность и состояние кожи. Многие врачи опытным взглядом уже видят «своих пациентов». Также по дерматологическим проблемам можно судить, какие системы в организме работают неправильно. Дерматологам важно подсказать своим пациентам, к каким специалистам им нужно еще обратиться, ведь в каждой дерматологической проблеме кроется патологический процесс во внутренних органах.

Так, при некоторых болезнях соединительной ткани на коже появляются высыпания. Как не пропустить серьезное заболевание? При каких болезнях страдает кожа?

Это такие заболевания, как системная красная волчанка, системная и локализированная склеродермия, системный склероз и дерматомиозит. У женщин эти болезни встречаются чаще, чем у мужчин.

Системная красная волчанка

Это полиорганное аутоиммунное заболевание, в основе которого лежит избыточная продукция антител и иммунных клеток против клеток своего же организма вместе с интерфероном типа 1. Эти белки активируют Т- и В- лимфоциты, которые повреждают соединительную ткань.

Исследования показали, что именно наличие интерферона 1 играет решающую роль в возникновении этой аутоиммунной реакции при СКВ. Также спровоцировать болезнь могут различные иммуномодуляторы, вакцинация, гиперинсоляция, воздействие лекарственных препаратов. Не последнее место занимает генетическая предрасположенность.

Проявления СКВ со стороны кожи

В острой стадии наблюдается полиморфизм сыпей. Это васкулиты, акроцианозы на кистях, тенаре и гипотенаре. Часто встречается поперечная исчерченность и ломкость ногтей, а также диффузная алопеция. Слизистая оболочка рта, реже половых органов, гиперемирована, на ней появляются пузырьковые элементы. Они быстро эрозируются и покрываются кровянисто-гнойным налетом.

При дискоидной красной волчанке появляются эритематозные пятна на коже лица, на руках, в области декольте. Они имеют розово-красный цвет и диаметр от 0,3 до 6 см, и могут инфильтрироваться, подлежать рубцовой атрофии. Встречаются больные с положительным феноменом Бенье - Мещерского, когда на коже волосистой части головы есть поражения в виде округлых эритематозных очагов с уплотненной эритемой по краям, а в центре- выраженная рубцовая атрофия с алопецией.

Существует несколько вариантов дискоидной красной волчанки- с выраженной гипо- или гиперпигментацией очагов - дисхромическая волчанка; волчанка, при которой формируется гиперкератоз - гиперкератотическая, а при разрастании бородавчатых элементов - веррукозная.

Диагностические критерии СКВ со стороны кожи

  • сыпь в районе скул, которая имеет вид фиксированных эритем с тенденцией к распространению;
  • дискоидные, эритрематозные очаги в виде приподнимающихся бляшек с плотно прилегающими кожными чешуйками и фолликулярными пробками;
  • фотосенсибилизация- появление эритроматозных пятен на коже в результате высокой чувствительности к солнечным лучам;
  • появление эрозий или язв в носоглотке или ротовой полости.

Часто волчанку приходится дифференцировать с экземой при себорее, высыпаниями при псориазе, розовыми угрями, туберкулезной волчанкой, эозинофильной гранулемой кожи лица.

2. Системная склеродермия, системный склероз

Склеродермия - редко встречающееся мультиорганное заболевание с широкой вариабельностью поражения кожи и внутренних органов. Наблюдаются отягощенный семейный анамнез и выраженные клинические симптомы.

Есть факты, которые доказывают связь наличия цитомегаловирусной инфекции с развитием склеродермии.

Проявления склеродермии со стороны кожи

Симметричное поражение кожи лица, конечностей, туловища. Процесс завершается склерозированием кожи. У 95-100% пациентов выявляется симптом Рейно.

При лимитированной склеродермии лицо больного имеет вид маски, а область вокруг рта описана как феномен «кисета».

Локализованная склеродермия - хроническое заболевание, в основе патогенеза которого лежит появление на коже склеротических воспалительных очагов. При этом внутренние органы без патологических изменений.

Выделяют 2 формы склеродермии - бляшечная и линейная. К редким разновидностям склеродермии относят склероатрофический лихен Цумбуша (болезнь белых пятен), прогрессирующую гемиатрофию Парри- Ромберга, атрофодермию Пазини- Пьерини.

Изменения на коже проходят в 3 стадии - эритема и отек, склероз и атрофия кожи. Процесс начинается с появления на коже розово- сиреневых или гиперпигментированных пятен. Форма этих пятен разная - от полосовидной до округлой. В стадии склероза очаги уплотняются, кожа утолщается и приобретает цвет слоновой кости.

  1. Дерматомиозит

Дерматомиозит (болезнь Вагнера) - редкая идиопатическая миопатия. Это заболевание относится к одним из самых тяжелых и самых неизученных болезней соединительной ткани. Поражение происходит в коже и в мышцах. Вероятный возбудитель болезни - пикорнавирус.

Изменения на коже появляется раньше, чем процесс в мышцах. Появляется отечная эритема с лиловатым оттенком, которая локализуется на открытых участках тела. Чаще высыпные элементы локализуются на коже вокруг глаз, лице, с наибольшей выраженностью на тыльной части кистей рук, шее, верхней части спины и груди, в области коленных и локтевых суставов. При этом лицо становится амимичным. Развиваются трофические нарушения. Это проявляется в усиленном выпадении волос, ломкости ногтей и сухости кожи. Также наблюдается болезненность ногтевого ложа при надавливании.

Ювенильный дерматомиозит

Чаще болеют девочки в пубертатном периоде. Процесс начинается остро с высокой температуры тела и сопровождается поражением кожи и мышц. При этой патологии выражены экссудативные и сосудистые компоненты.

Процесс чаще локализуется на щеках и имеет вид бабочки гелиотропного цвета. Появляются крупные очаги на туловище и конечностях.

В целях диагностики и подтверждения диагноза проводят обнаружение миоглобина в сыворотке крови с помощью реакции пассивной гемагглютинации. Содержание в крови миоглобина больше 128мг/мл подтверждает диагноз «дерматомиозит».

К сожалению, сегодня много заболеваний, с которыми человечество борется ежедневно. Но эта борьба была бы эффективнее, если бы люди, заметив какие-то нарушения в работе организма, во-первых, вовремя обращались за помощью, а во-вторых, придя на прием к специалисту, сразу получили бы предварительный диагноз и узнали тактику действия дальше.

Доброжелательность, внимание и желание помочь от доктора - отличное лекарство, которое может исцелить не только душу, но и тело.


Наследственные дисплазии соединительной ткани – это гетерогенная группа моногенных болезней, обусловленных присутствием мутаций в генах белков внеклеточного матрикса или ферментов их биосинтеза, а также в генах, участвующих в регуляции морфогенеза соединительной ткани. Многие из этих заболеваний наследуются по аутосомно-доминантному типу. Для большинства из них характерен выраженный плейотропизм, то есть вовлечение в патологический процесс нескольких систем, тканей или органов.

Ведущая роль в поддержании структурной целостности различных соединительных тканей человека принадлежит коллагенам, мажорному семейству близкородственных внеклеточных матриксных белков. Коллагены составляют более 30% общей массы белков тела млекопитающих, причём около 40% находится в коже, примерно 50% - в тканях скелета и 10% - в строме внутренних органов. Открытие около 40 коллагеновых генов и расшифровка их молекулярной природы создали предпосылки для изучения молекулярных основ этиологии и патогенеза наследственных коллагенопатий – гетерогенной группы из более чем 70 моногенных заболеваний, обусловленных генетическими нарушениями структуры коллагенов. Наиболее известным генетическим вариантом наследственной дисплазии соединительной ткани является синдром Марфана. Долгое время предполагали, что это заболевание обусловлено мутациями в одном из коллагеновых генов. Однако оказалось, что при синдроме Марфана первичным биохимическим дефектом является нарушение структуры фибриллина 1 – белка микрофибриллярных волокон внеклеточного матрикса, выполняющего в большинстве соединительных тканей архитектурные функции. Главными регуляторами морфогенеза многих тканей являются трансформируюшие (Tgfβ) и фибробластные (Fgf) факторы роста, их антогонисты и рецепторы, а также транскрипционные факторы. Мутации в генах, кодирующих эти группы белков и специфически экспрессирующихся в соединительной ткани, также приводят к различным вариантам наследственной дисплазии соединительной ткани. Остановимся более подробно на перечисленных выше группах болезней.

Наследственные коллагенопатии

В настоящее время известно 27 различных типов коллагеновых белков. Каждый из них состоит из трех равномерно скрученных полипептидных альфа-цепей, образующих структуру, подобную трехгранному шнуру. Разные типы коллагенов могут быть образованы либо тремя одинаковыми альфа-цепями, либо двумя или тремя различными полипептидами в соотношении 2:1 или 1:1:1 соответственно. Каждая альфа-цепь кодируется собственным геном, так что разнообразие коллагеновых генов больше, чем разнообразие соответствующих белков. Биосинтез зрелых коллагенов сопровождается необычно большим числом посттрансляционных модификаций, так что на одной молекуле проколлагеновой полипептидной цепи осуществляется более 120 реакций. В этих превращениях принимают участие более 14 различных ферментов. Все зрелые коллагеновые белки способны к образованию крупных супрамолекулярных агрегатов.

Любая альфа-цепь содержит коллагеновой домен, на всем протяжении которого за исключением короткого C-терминального участка каждая третья аминокислота является глицином. Таким образом, молекулярная формула коллагенового домена может быть записана как (Gly-X-Y)n, где X и Y - аминокислоты не-Gly типа. Различные коллагеновые альфа цепи различаются по количеству и протяженности (Gly-X-Y)-мотивов в коллагеновом домене и по конкретному содержанию аминокислот в X и Y положениях. Присутствие глицина, самой маленькой из аминокислот, в каждом третьем положении коллагеновых полипептидных цепей существенно для их правильного скручивания в тройную спираль, так как глицин при этом занимает ограниченное пространство в центре триплекса. Поэтому любые мутации, приводящие к замене глицина на другую аминокислоту, будут сопровождаться локальными нарушениями структуры тройной спирали и дезорганизацией более крупных агрегатов коллагена. К тяжелым последствиям также приводят мутации, нарушающие структуру С-концевого участка адьфа-цепи, так как образование триплекса по типу «застежки-молнии» начинается именно с этого участка молекулы. Кроме того, именно в этой области локализованы сайты взаимодействия коллагена более чем с 50 другими белками. Патологический процесс оказывается менее тяжелым, если в результате мутации альфа-цепь полностью утрачивает способность участвовать в формировании зрелых коллагеновых молекул. Это мутации, сопровождающиеся преждевременной терминацией трансляции или затрагивающие N-концевые районы альфа-цепи коллагена. При этом в образовании триплексной структуры принимают участие только нормальные полипептиды, мутантные альфа-цепи в нее не входят и вскоре после синтеза подвергаются внутриклеточному протеолизу. В результате снижается скорость синтеза зрелых коллагеновых молекул, но их структура сохраняется нормальной, и они не утрачивают способность к образованию упорядоченных супрамолекулярных агрегатов. Однако это происходит с более низкой скоростью, что и может привести к количественным нарушениям на уровне коллагеновых структур. Доминантный характер заболеваний, обусловленных нарушением структуры коллагеновых молекул, объясняется тем, что присутствие, наряду с мутантными, нормальных альфа-цепей не предотвращает образования дефектов в фибриллах или других надмолекулярных комплексах коллагена. В этой связи можно подчеркнуть, что заболевания, вызванные нарушением биосинтеза коллагеновых молекул и связанные с присутствием мутаций в генах соответствующих ферментов, наследуются по рецессивному типу.

Коллагены I, II и III типов являются мажорными и составляют более 90% всех коллагенновых белков. Они способны формировать крупные высоко организованные фибриллы, в которых отдельные молекулы коллагена располагаются четырехступенчатыми уступами. Остальные коллагеновые белки относятся к классу нефибриллярных коллагенов, формирующих мелкие фибриллы, либо листовидные мембранные образования.

Коллаген I типа экспрессируется повсеместно, но особенно обильно представлен в костной системе, сухожилиях и коже. Коллаген II типа является мажорным хрящевым коллагеном. Он также составляет основу стекловидного тела. Кроме того, в хрящевой ткани экспрессируются минорные коллагены IX, X, XI и XII типов. Эмбриональный мажорный коллаген III типа является основным компонентом стенок сосудов и кишечника. В базальных мембранах присутствует коллаген IV типа. V коллаген образует каркас внутри фибрилл мажорных коллагенов. Коллаген VI типа участвует во взаимодействии между фибриллами мажорных коллагенов и другими структурными компонентами внеклеточного матрикса. Коллагены VII и XVII типов присутствуют в эпидермальных кератиноцитах и являются компонентами кожных опорных фибрилл. Коллагены VIII и XVIII типов найдены в эндотелии сосудов и роговице, они участвуют в регуляции неоваскуляризации и образовании мембраны Десцемета. Остальные коллагены ассоциируются с мажорными коллагенами I и II типов, способствуя их взаимодействию с другими белками внеклеточного матрикса.

Очевидно, что структурные дефекты коллагенов могут сопровождаться тяжелыми повреждениями соединительной ткани. В настоящее время мутации, ассоциированные с различными нозологическими формами наследственных коллагенопатий, найдены в 25 коллагеновых генах, участвующих в синтезе 13 различных типов коллагенов. Клинические проявления этих заболеваний хорошо коррелируют с характером экспрессии различных типов коллагенов и с исполняемыми ими функциями.

Так, доминантные мутации в двух генах мажорного фибриллярного коллагена I типа (COL1A1 и COL1A2 ) найдены у больных с различными формами несовершенного остеогенеза – наиболее распространенного наследственного заболевания соединительной ткани. Частота этого заболевания составляет 1:10000 новорожденных и 1:1000 среди ортопедических больных. Клиническая картина несовершенного остеогенеза характеризуется повышенной ломкостью костей и патологическими изменениями ряда других тканей, богатых коллагеном I типа, таких как кожа, связки, хрящи, фасции, склеры, зубы, ткани среднего и внутреннего уха. При несовершенном остеогенезе наблюдается чрезвычайно высокий клинический полиморфизм. В соответствии с современной классификацией выделяют четыре клинические формы заболевания, наиболее тяжелая из которых форма II заканчивается летальным исходом в период внутриутробного развития плода или вскоре после рождения. Более мягко протекает форма I, при которой множественные переломы костей дебютируют в 4-6 декаде жизни, хотя в 50% случаев они сопровождаются потерей слуха. Оказалось, что при тяжелой форме несовершенного остеогенеза II типа преобладающими являются миссенс-мутации Gly-типа и С-концевые мутации, в то время как при относительно легкой форме заболевания I типа таких мутаций практически не обнаруживается, а присутствуют миссенс-мутации неGly-типа и N-концевые мутации.

Совершенно иная клиническая картина наблюдается при мутациях в генах хрящевых коллагенов. Мы уже писали о том, что различные мутации в гене мажорного коллагена II типа (COL2A1 ) могут приводить к 13 нозологически самостоятельным аллельным вариантам заболеваний – табл. 8. Среди них ведущее место занимают тяжелые хондродисплазии (7 вариантов), а также слабо выраженные хондродисплазии (2 варианта), при которых основным симптомом заболевания может быть остеоартроз или аваскулярный некроз головки бедра. Некоторые мутации в гене COL2A1 приводят к клинике эпифизарных дисплазий (3 варианта), которые могут сочетаться с офтальмопатией, дефектами органа слуха, черепно-лицевыми и другими аномалиями. Среди них синдром Стиклера 1 типа. Мутации в гене COL2A1 найдены также у больных с одним из генетических вариантов изолированной офтальмопатии. Таким образом, для заболеваний, обусловленных мутациями в гене мажорного хрящевого коллагена II типа, характерен огромный клинический полиморфизм. Частично это объясняется типом мутации, и тяжелые варианты заболевания в большей степени ассоциированы с заменами глицина или С-концевыми мутациями. Однако различия в клинических проявлениях мутаций зависят также и от того, какая функция коллагена при этом нарушена и в каких хрящевых тканях эта функция наиболее значима.

Таблица 8. Краткая характеристика заболеваний, обусловленных мутациями в гене COL2A1 мажорного хрящевого коллагена II типа

Нозологическая форма
Спондилоэпифизарная дисплазия нанизм, укорочение туловища, расширение зон эпифизов, задержка окостенения тел позвонков, бедренных костей, coxа vara.
Спондилометафизарная дисплазия Струдвика нанизм, укорочение туловища, расширение зон эпифизов, метафизов, сколиоз, килевидная деформация грудины
Танатоформная дисплазия карликовость за счёт укорочения конечностей, микромелия, узкая грудная клетка, короткие рёбра, широкие кости таза и длинные трубчатые кости
Ахондрогенез, II;

гипохондрогенез

укорочение конечностей, туловища, шеи, макроцефалия, внутриутробная гибель плода
Дисплазия Книста, метатропная карликовость, тип II выраженный нанизм, короткое туловище, ризомелия, тугоподвижность суставов, расширение и остеопороз метафизов, миопия, плоское лицо
Платиспондилическая скелетная дисплазия
Спондилопериферическая дисплазия
Остеоартроз остеоартроз, невыраженная хондродисплазия или спондилоэпифизарная дисплазия
Аваскулярный некроз головки бедра аваскулярный некроз головки бедра
Эпифизарная дисплазия, множественная, с миопией и кондуктивной тугоухостью нанизм, расширение эпифизов, миопия, кондуктивная тугоухость
Синдром Стиклера, тип 1, артроофтальмопатия дегенеративные изменения в суставах, прогрессирующая миопия, пролапс митрального клапана, черепно-лицевые аномалии

Витреоретинопатия с эпифизарной дисплазией

дегенерация стекловидного тела и сетчатки, эпифизарная дисплазия фаланг
Витреоретинальная дегенерация,

Вагнера синдром

дегенерация стекловидного тела, решётчатая дегенерация сетчатки,

ранняя катаракта

Сходный спектр клинических проявлений характерен для наследственных коллагенопатй, обусловленных присутствием доминантных мутаций в генах минорных хрящевых коллагенов – табл. 9. Так, мутации в любом их трех генов коллагена IX типа найдены у больных с различными формами множественной эпифизарной дисплазии, хотя некоторые из них вызывают болезнь межпозвоночных дисков, характеризующуюся присутствием множественных межпозвоночных грыж поясничного отдела позвоночника. Мутации в генах коллагена X типа приводят к клинике двух тяжелых метафизарных дисплазий. А мутации в генах коллагена XI типа обнаруживаются у таких пациентов, у которых тяжелые хондродисплазии или артропатии сочетаются с выраженными дефектами слуха и другими врожденными пороками развития. Среди них синдромы Стиклера 2 и 3 типов. Коллаген XI типа играет важную роль в формировании и передаче слухового сигнала, поэтому неудивительно, что нарушения слуха присутствуют при всех формах этих заболеваний, и некоторые мутации в гене COL11A2 найдены у больных с одной из доминантных форм несиндромальной нейросенсорной тугоухости.

Таблица 9. Краткая характеристика заболеваний, обусловленных мутациями в генах минорных хрящевых коллагенов IX, X и XI типов

Нозологическая форма, Основные клинические критерии диагностики
Эпифизарная дисплазия, множественная, доминантная,ямажорная)венной истемы переразгибание, остеоратриты коле-нных суставов, нарушение походки, грыжи Шморля, остеофиты грудопоясничной области позвоночника
Эпифизарная дисплазия, множественная, тип 2, переразгибание коленных суставов с развитием хронической артропатии, задержка роста, Х-образная деформация нижних конечностей, множественная эпифизарная дисплазия
Эпифизарная дисплазия, множественная, тип 3, ранние артропатии коленных суставов, нарушение походки, миотонический синдром
Болезнь межпозвоночных дисков, множественные межпозвоночные грыжи поясничного отдела позвоночника
Метафизарная хондродисплазия Шмида, COL10A1 метафизарный дизостоз, искривление конечностей, coxa vara
Спондилометафизарная дисплазия, укорочение туловища, расширение метафизов
Отоспондилометаэпифизарная дисплазия, гипоплазия средней части лица, расщелина нёба, микрогнатия, сенсоневральная тугоухость, и спондилоэпиметафизарная дисплазия; прогрессирующий остеоартроз
Синдром Вейсенбахера-Цвеймюллера, микрогения, глоссоптоз, расщелена нёба, фетальная хондродисплазия, сенсоневральная тугоухость, глазные аномалии, тенденция к снижению роста
Синдром Стиклера, тип 2, артроофтальмопатия, неспецифическая артропатия, марфаноидный фенотип, миопия, гипоплазия средней части лица, расщелина нёба
Синдром Маршалла,

окулярный гипертелоризм, седловидный нос, дефекты слуха, тяжёлая миопия, врождённая катаракта, эктодермальная дисплазия, задержка речевого развития

Синдром Стиклера, тип 3, артроофтальмопатия, «мягкая» артропатия, нарушение слуха, тяжёлая миопия, дегенерация сетчатки, гипоплазия средней части лица, расщелина нёба

Мутации в гене COL3A1 эмбрионального коллагена III типа, обильно представленного в стенках сосудов и кишечника, присутствуют у больных с IV-м «артериальным» типом синдрома Элерса-Данло. Классические варианты этого синдрома I и II типа обусловлены генетическими дефектами коллагена V. Основными клиническими проявлениями синдрома Элерса-Данло являются гиперрастяжимость кожи, гипермобильность и вывихи суставов, скелетные деформации, варикозное расширение вен, пролабирование клапанов сердца. «Артериальный» тип заболевания является наиболее тяжелым, так как сопровождается геморрагическим синдромом, при котором возможны разрывы артерий и перфорации внутренних органов. При VII типе синдрома Элерса-Данло, характеризующимся сверх гиперрастяжимостью и лёгкой ранимостью кожи, выраженной гипермобильностью суставов, нанизмом и скелетными дисплазиями, найдены специфические мутации в генах COL1A1 и COL1A2 коллагена I типа. Все идентифицированные у больных мутации затрагивают сайт узнавания для одной из протеаз, участвующих в процессинга коллагена I, а именно в удалении N-концевого пропептида. Остальные варианты синдрома Элерса-Данло наследуются по аутосомно-рецессивному типу, так как большинство из них обусловлено мутациями в генах ферментов биосинтеза коллагена.

Генетические дефекты базального коллагена IV типа приводят к синдрому Альпорта, для которого характерно сочетание нефропатии с дефектами слуха. Однако различные варианты этого синдрома наследуются по Х-сцепленному или аутосомно-рецессивному типу, поэтому мы не будем на них подробно останавливаться..

Доминантные мутации в трех генах коллагена VI типа приводят к развитию двух нозологически самостоятельных аллельных форм врожденной миопатии, сочетающейся с контрактурами суставов. Это миопатия Бетлема и миодистрофия Ульриха. Клиническими проявлениями первого заболевания являются врожденная мышечная гипотония, медленно прогрессирующая атрофия мышц, множественные контрактуры суставов. При миодистрофии Ульриха дополнительно наблюдаются кривошея, дисплазия тазобедренных суставов.

Мутации в генах коллагенов VII и XVII типов, присутствующих в эпидермальных кератиноцитах и кожных опорных фибриллах, найдены у больных с различными формами буллезного эпидермолиза. В настоящее время описано 8 аллельных вариантов заболеваний, вызванных мутациями в гене COL7A1. 7 из них – это тяжелые дистрофические формы буллезного эпидермолиза. Они могут проявляться с рождения или в первые недели жизни в виде субэпидермальных отслаивающихся пузырей или высыпаний на туловище, лице, конечностях, слизистых полости рта, бронхиолах, коньюктиве и роговице. В некоторых случаях возможна ранняя гибели ребёнка. В то же время описан относительно доброкачественный вариант преходящего буллёзного дермолизиса новорожденных, также обусловленный мутациями в гене COL7A1. Различные аллельные варианты буллезного эпидермолиза могут наследоваться как по аутосомно-доминантному, так и по аутосомно-рецессивному типу. Мутации в гене COL17A1 приводят к двум аллельным более доброкачественным вариантам атрофического буллезного эпидермолиза, один из которых наследуется по аутосомно-доминантному, а другой – по аутосомно-рецессивному типу.

Мы уже писали об офтальмопатиях, обусловленных мутациями в генах хрящевых коллагенов. Два аллельных варианта дистрофии роговицы глаза, одна из которых с прогрессирующим течением сопровождается эндотелиальным отёком, а другая носит название полиморфной задней, ассоциированы с мутациями в гене COL8A1 коллагена VIII типа. Рецессивные мутации в гене коллагена XVIII типа найдены у пациентов с синдромом Кноблоха – витреоретинальной дегенерацией с отслоением сетчатки.

Тугоухость часто входит в структуру наследственных коллагенопатий, обусловленных мутациям в генах коллагегнов I, II, IV и XI типов, участвующих в передаче слухового сигнала. Вообще разнообразие наследственных форм тугоухости очень велико. В настоящее время идентифицировано более 30 генов, мутации в которых приводят к различным дефектам слуха. При этом кондуктивная тугоухость чаще наследуется по аутосомно-доминантному типу, в то время как сенсоневральная – по аутосомно-рецессивному. Описаны также Х-сцепленные и митохондриальные формы наследственной тугоухости.

Сопутствующими симптомами многих вариантов наследственных коллагенопатий и в первую очередь синдрома Элерса-Данло, а также буллёзного эпидермолиза являются дистрофия ногтей, несовершенный дентиногенез, парадонтоз. Один из генетических вариантов изолированной дистрофии ногтей обусловлен мутациями в гене коллагена VII типа. Пролапс митрального и других клапанов сердца – входит в структуру синдрома Стиклера и классических форм синдрома Элерса-Данло. Все перечисленные выше заболевания, за исключением некоторых форм буллезного эпидермолиза наследуются по аутосомно-доминантному типу.

Синдром Марфана

Синдром Марфана впервые был описан в 1896 году французским педиатром А. Б. Марфаном. Поэтому мы остановимся на нем более подробно. Синдром Марфана относится к наследственным дисплазиям соединительной ткани. При этом наблюдается одновременное поражение трех систем: опорно-двигательной, сердечно-сосудистой и органа зрения. Характерными клиническими проявлениями синдрома Марфана являются высокий рост, арахнодактилия (длинные, тонкие, «паукообразные» пальцы рук), гиперподвижность суставов, подвывих хрусталика и миопия, поражение крупных сосудов (аневризма аорты), порок сердца (пролапс митрального клапана). Каждый из этих симптомов может отличаться по степени тяжести и сочетаемости друг с другом у отдельных членов семьи. Для болезни Марфана характерны выраженный плейотропизм, варьирующая экспрессивность и высокая пенетрантность. Диагноз синдрома Марфана, ставится при наличии минимум пяти симптомов – аневризма аорты, вывих хрусталика, арахнодактилия, деформация грудины, кифосколиоз. При этом имеет место увеличение (в два раза и более) выведения с мочой глюкозоаминогликанов и их фракций. Особенно резко возрастает почечная экскреция хондроитин-4-6-сульфатов и в меньшей степени – гиалуроновой кислоты и гепаран-сульфата. В моче больных определяется также повышенное содержание (в два и более раз) аминокислоты оксипролина.

Популяционная частота составляет 1:25000. Причиной развития заболевания являются гетерозиготные мутации в гене фибриллина 1 – белка внеклеточного матрикса, выполняющего в большинстве соединительных тканей архитектурные функции. Ген фибриллина картирован в области 15q21.1, и в настоящее время в нем идентифицировано более 550 мутаций. Эти мутации обладают широким спектром клинических проявлений от изолированной эктопии хрусталика с мягкими скелетными проявлениями марфаноидного типа до тяжелых неонатальных форм синдрома Марфана, заканчивающихся летальным исходом в течение первых двух лет жизни. Подавляющее большинство мутаций в гене фибриллина 1 диагностировано у больных с классическим вариантом синдрома Марфана. Молекулярно-генетическая диагностика болезни Марфана как в пренатальном, так и в постнатальном периоде, хотя принципиально возможна, но осложняется тем обстоятельством, что подавляющее большинство мутаций в гене фибриллина уникальны, то есть описаны только у одного больного или в одной семье.

По утверждению американских врачей президент США Авраам Линкольм (1809-1865) и некоторые его родственники страдали болезнью Марфана.

Описание родословной: I-1-больная болезнью Марфана (бМ); II-1-Ненси Хенке, бМ?; III-1-А.Линкольн (1809-1865), бМ, III-2 и III-3-бМ?; IV-1-бМ, умер от воспаления легких; IV-2-Тэдд, бМ?; IV-4-Роберт; V-1-Авраам II. бМ.

Марфаноподобный фенотип наблюдался у великого скрипача Николо Паганини и сказочника Ганса Христиана Андерсена.

Наследственные нарушения морфогенеза соединительной ткани

По аутосомно-доминантному типу наследуются многие заболевания, обусловленные мутациями в генах, участвующих в морфогенезе соединительной ткани. Регуляция морфогенеза тканей осуществляется под контролем небольших пептидных молекул внеклеточного матрикса, относящихся к семейству факторов роста. Эти молекулы передают свои сигналы посредством образования гетеромерных комплексов со специфическими тирозин- или серин/треонин-киназными трансмембранными рецепторами. Ингибирование факторов роста происходит при их взаимодействии с молекулами другого класса, получившими название антагонистов факторов роста.

Определяющая роль в морфогенезе хрящевой и костной тканей принадлежит суперсемейству трансформирующих факторов роста β (Tgfβ), к числу которых относятся, в частности, костные морфогенетические белки. Tgfβ являются мультифункциональными цитокинами и они участвуют в регуляции пролиферации и дифференцировки множества типов клеток. Одной из функций этих белков является регуляция экспрессии коллагенов. Существуют различные тканеспецифические изоформы Tgfβ. Высокий уровень экспрессии Tgfβ1 наблюдается в развивающемся хряще, костной ткани и коже, что указывает на важную роль этого полипептидного регулятора в росте и дифференцировке соединительной ткани.

Гетерозиготные миссенс-мутации в гене TGFΒ1 идентифицированы у больных с аутосомно-доминантной прогрессирующей диафизарной дисплазией 1 типа или болезнью Камурати-Энгельманна. Заболевание, впервые описанное в 1922 году, характеризуется гиперостозом и склерозом диафизов длинных костей, марфаноидным фенотипом с долихостеномелией, множественной склеротической остеопатией и деформацией позвоночника. Патологический процесс обычно начинается в головке бедра или голени во второй декаде жизни, а иногда до 10 лет или даже в период новорожденности. Некоторым пациентам ошибочно ставится диагноз полиомиелита. Ряд авторов наблюдали положительный эффект в виде уменьшения болевого синдрома и улучшения данных рентгенографического исследования от применения кортикостероидных препаратов. В разных популяциях мажорными в гене TGFΒ1 являются мутации R218C, R218H и C225R. Все они сопровождаются повышением транскрипционной активности гена TGFB1 , с последующим увеличением скорости пролиферации остеобластов.

Однако чаще мутации, ассоциированные с наследственными дисплазиями соединительной ткани, нарушают структуру не самих факторов роста, а их рецепторов. В настоящее время идентифицировано два типа рецепторов Tgfβ – I и II. Рецепторы II типа способны связывать лиганды, но передавать сигнал они могут только в присутствии рецепторов I типа. С другой стороны, связывание лиганда рецепторами I типа может происходить только в присутствии рецепторов II типа. В генах каждого из этих двух рецепторов – TGFBR1 и TGFBR2 – найдены доминантные мутации у больных с марфаноподобным фенотипом. Гетерозиготные миссенс-мутации в гене TGFBR1 найдены у больных синдромом Фурлонга – марфаноидной болезнью II типа, сочетающейся с краниосиностозом, гипертелоризмом и в некоторых случаях с птозом и расщелиной неба. При этом эктопии хрусталика не наблюдается и рост больных, как правило, сохраняется нормальным. Мутации в гене TGFBR2 идентифицированы у больных с аутосомно-доминантным синдромом Марфана II типа. При этом варианте у больных наблюдаются скелетные и кардиоваскулярные проявления синдрома Марфана при отсутствии или слабой выраженности глазной патологии. Аллельным вариантом каждого из этих двух заболеваний является синдром аневризмы аорты Лоеса-Диетза – расслаивающаяся аневризма восходящего или грудного отдела аорты, которая может сочетаться с врождёнными пороками сердца или пролапсом митрального клапана, черепно-лицевыми дисморфиями, задержкой умственного развития.

Особенностью скелетных дисплазий, связанных с мутациями в генах морфогенетических белков, является большое количество заболеваний, патогенетическую основу которых составляют синостозы. Это множественный синостоз, гиперостоз и склеростеоз, входящие в структуру аутосомно-доминантных костно-суставных дисплазий, обусловленных мутациями в генах антагонистов костных морфогенетических белков, таких как ноггин или склеростин. Специфические мутации в генах рецепторов фибробластных факторов роста и некоторых транскрипционных факторов часто обнаруживаются при различных наследственных вариантах краниосиностозов, во многих случаях сочетающихся со слиянием/укороченим/удлиненим метакарпальных фаланг кистей и стоп. Это акроцефалосиндактилии, а также изолированные брахидактилии и синдактилии. Остановимся более подробно на заболеваниях, обусловленных мутациями в генах рецепторов фибробластных факторов роста.

Фибробластные факторы роста (Fgf) относятся к семейству родственных полипептидов с широким спектром митогенной, ангиогенной, нейротропной и других вариантов активности, связанных с клеточной поверхностью. Свое действие они осуществляют посредством активации трансмембранных тирозинкиназных рецепторов. В настоящее время идентифицированы четыре типа Fgf-рецепторов, кодируемых соответственно генами FGFR1 FGFR4 . Более 20 нозологически самостоятельных форм аутосомно-доминантных скелетных дисплазий обусловлены мутациями в трех генах рецепторов фибробластных факторов роста – FGFR1 , FGFR2 и FGFR3 . Подавляющее большинство этих мутаций возникает de novo. Мутации в генах FGFR1 и FGFR2 чаще выявляются у больных с черепно-лицевыми дисплазиями, сочетающимися с дефектами конечностей, в то время как нарушения работы гена FGFR3, наряду с этим, чаще приводят к различным вариантам хондродисплазии и нанизма.

Впервые мутации в гене FGFR1 были идентифицированы у больного с акроцефалосиндактилиией 5 типа или синдромом Пфайффера 1 типа. Ведущими клиническими проявлениями этого синдрома являются акроцефалия, глазной гипетелоризм, синдактилия II - III пальцев кистей и II - IV пальцев стоп, широкие дистальные фаланги I пальцев, в некоторых случаях полидактилия. В дальнейшем мутации в гене FGFR1 были идентифицированы у больных с другими клиническими формами черепно-лицевой дисплазии, сочетающейся в ряде случаев с синдактилией и аномалиями конечностей. В эту группу вошли 3 заболевания: синдром Джексона-Вейса, при котором краниосиностоз сочетается с гипоплазией средней части лица и аномалиями нижних конечностей; синдром Антлея-Бикслера, характеризующийся трапецевидной фомой черепа, гипоплазией средней части лица, плечелучевым синостозом, искривлением и неонатальными переломами бёдер, несиндромальная тригоноцефалия или метопический краниосиностоз. Кроме того, мутации в гене FGFR1 найдены у больных остеоглофонической дисплазией, сочетающей в себе черты краниосиностоза и нанизма.

При всех формах перечисленных выше заболеваний идентифицированы гетерозиготные миссенс-мутации в гене FGFR1 , обладающие доминантно-негативным эффектом. Наиболее частой из них является замена пролинового остатка на аргинин в 252 позиции рецептора. Мутация идентифицирована у больных с синдромами Пфайффера и Джексона-Вейса. Положение пролина в этой позиции высоко консервативно, и оно одинаково во всех четырех Fgf-рецепторах. Мутация P252R увеличивает аффинитет мутантного рецептора по отношению к лигандам за счет образования ряда дополнительных водородных связей. Этим и объясняется ее доминантно-негативный эффект. Гомологичные мутации у больных с другими формами краниосиностозов идентифицированы в гене FGFR2 – при синдромах Апера и Пфайффера 2 типа, а в гене FGFR3 – при синдромах Муенке и Сэтре-Чотзена (см. ниже).

Причиной развития остеоглофонической дисплазии является замена высоко консервативных аминокислотных остатков в узкой области, соединяющей сайт связывания лиганда и трансмембранный домен Fgf-рецептора 1 типа. Показано, что одна из этих мутаций (Y372C) также увеличивает активность рецептора, то есть обладает доминантно-негативным эффектом. Интересно, что гомологичные замены триптофана в Fgf-рецепторах 2 и 3 типов приводят к синдрому Беаре-Стевенсона и танатоформной дисплазии I типа соответственно (см. ниже).

Гораздо большее разнообразие краниосиностозов ассоциировано с мутациями в гене FGFR2 . Оказалось, что многие варианты синдромов Пфайффера, Джексона-Вейса и Антлея-Бикслера также связаны с нарушением работы Fgf-рецептора 2-го типа. Таким образом, каждое их этих заболеваний является генетически гетерогенным. Чаще всего, гетерозиготные миссенс-мутации в гене FGFR2 обнаруживаются у больных с тремя формами синдромальных краниосиностозов - Апера, Крузона и Пфайффера. Кроме того, подобные мутации найдены у больных синдромом Беаре-Стевенсона, скафоцефалическим синдромом, синдромом Сэтре-Чотзена и несиндромальным уникоронарным краниосиностозом. Синдром Крузона характеризуется краниальным синостозом, глазным гипертелоризмом, экзофтальмом, наружным косоглазием, клювовидной формой носа, короткой верхней губой, гипоплазией верхней челюсти и относительной прогнатией. Синдром Апера проявляется краниосиностозом, гипоплазией средней части лица, кожной и костной синдактилией пальцев кистей и стоп. Синдром морщинистой кожи Беаре-Стевенсона – это выраженная морщинистость кожи, чёрный акантоз, краниосиностоз, черепно-лицевые дисморфии, аномалии пальцев, пуповины, гениталий и ранняя смерть. Синдром Сэтре-Чотзена характеризуется венечным синостозом, брахицефалией, низким ростом волос на лбу, лицевой асимметрией, птозом, глазным гипертелоризмом, широкими большими пальцами и клинодактилией пальцев стопы; расщелиной нёба, нанизмом и иногда задержкой интеллектуального развития. Типичными проявлениями скафоцефалического синдрома являются скафоцефалия, макроцефалия, глазной гипертлоризм, мелкие орбиты, птоз, смещение верхней челюсти и умеренная задержка умственного развития. Таким образом, 9 клинических вариантов краниосиностозов составляют единую аллельную серию. Это еще один пример удивительного клинического полиморфизма.

Распределение мутаций в гене FGFR2 и их связь с различными клиническими вариантами краниосиностозов носит неслучайный характер. Как правило, при каждой нозологической форме этих заболеваний мутации преимущественно располагаются в узкой области гена FGFR2 , связанной с определенной функцией соответствующего рецептора. Однако, несмотря на очевидную связь специфических мутаций в гене FGFR2 с клиническими особенностями синдромальных краниосиностозов, в некоторых случаях их проявления зависят от каких-то других дополнительных факторов.

Три генетических варианта краниосиностозов – синдромы Муенке, Крузона, сочетающегося с чёрным акантозом (специфическим кожным гиперкератозом с гиперпигментацией) и Сэтре-Чотзена – связаны с мутациями в гене FGFR3 . Отличительными особенностями коронарного краниосиностоза Муенке являются расширенные, конусовидные эпифизы, изменения формы средней фаланги, синостоз костей запястья и предплёсны До сих пор непонятно, почему одни и те же мутации в генах FGFR1 , FGFR2 и FGFR3 приводят к разным, хотя и перекрывающимся фенотипическим проявлениям краниосиностозов.

Однако, как мы уже упоминали ранее, гораздо чаще гетерозиготные мутации в гене FGFR3 обнаруживаются у больных с различными наследственными вариантами хондродисплазий и нанизма, тяжесть клинических проявлений которых варьирует от мягких форм – гипохондроплазии, более тяжелых – ахондроплазии, до летальной неонатальной карликовости – танатоформной дисплазии.

Ахондроплазия - наиболее частая генетическая форма карликовости, в 30-40% случаев сопровождающаяся гидроцефалией, характеризуется укорочением проксимальных отделов конечностей, макроцефалией с нависающим лбом, гипоплазией средней части лица, изменением конфигурации пальцев кистей рук по типу трезубца. У больных выявляется гипермобильность большинства суставов, особенно коленных, в сочетании с ограничением сгибания и ротации локтевых суставов. Кифоз грудопоясничного отдела наблюдается уже с рождения, однако после того, как ребёнок начинает ходить, на первый план начинает выступать поясничный лордоз. Характерна умеренная мышечная гипотония, тенденция к задержке моторного развития. Интеллект, при отсутствии гидроцефалии или других поражений центральной нервной системы, нормальный. Основной причиной развития ахондроплазии является замена глицина на аргинин в трансмембранном домене Fgf-рецептора 3 – G380R.

Совершенно иной спектр мутаций в гене FGFR3 выявляется у больных с гипохондроплазией – более распространенной хондродистрофией, клинически напоминающей ахондроплазию. Заболевание характеризуется нанизмом, нормальными размерами головы, брахидактилией с отсутствием типичного для ахондроплазии трезубца. Дополнительными критериями дифференциальной диагностики является отсутствие искривления большеберцовых костей, расширения проксимальных отделов малоберцовых костей и изменения формы таза. Гетерозиготные миссенс-мутации у больных с гипохондроплазией затрагивают, главным образом, две аминокислоты, локализованные в тирозинкиназном домене Fgf-рецептора 3. Это замены аспарагина в 540 положении на лизин - N540K, и лизина в 650 положении на аспарагин - K650N, глутамин - K650Q или метионин - K650М.

Танатоформная дисплазия, тип I – микромелическая хондродистрофия с деформацией рёбер и резким укорочением костей конечностей. Характерна выраженная платиспондилия, увеличение межпозвоночного расстояния, отсутствие сужения каудального отдела спинномозгового канала. Рентгенографически тела позвонков имеют H-образную форму, а головки бедренных костей - шаровидную форму. При танатоформной дисплазии, тип II – дополнительно выявляется дефорамация черепа по типу трилистника. Три гетерозиготные миссенс-мутации - R248C, S249C и Y373C объясняют более 70% случаев заболевания, причем наиболее частой мутацией, встречающейся почти у половины больных во всех исследованных популяциях является R248C Гетерозиготная мутация K650M найдена у всех обследованных больных с танатоформной дисплазией 2 типа.

На этом клинический полиморфизм аллельных вариантов хондродисплазий, обусловленных мутациями в гене FGFR3 , не ограничивается. Известно, по крайней мере, еще три варианта этих заболеваний, среди них скелетная дисплазия Сан Диего, характеризующаяся тяжёлым постнатальным нанизмом, умеренной задержкой умственного развития, укорочением туловища, черепно-лицевыми аномалиями и специфическими рентгенографическими изменениями.

Таким образом, мутации в каждом из трех генов рецепторов фибробластных факторов роста, приводят к различным нозологически самостоятельным заболеваниям, составляющим единые аллельные серии. И это является основой наблюдаемого клинического полиморфизма. С другой стороны, некоторые клинически сходные состояния могут быть обусловлены мутациями в любом из генов этих рецепторов, что позволяет говорить об их генетической гетерогенности. Такой сложный характер наследования затрудняют дифференциальную диагностику заболеваний, которая во многих случаях становится возможной только с привлечением данных молекулярно-генетического обследования.

Большая группа заболеваний, ассоциированных с мутациями в генах морфогенетических белков, относится к группе офтальмопатий. Шесть аллельных вариантов дистрофии роговицы глаза обусловлены доминантными мутациями в гене TGFBI , индуцируемом Tgfβ1. Это дистрофии роговицы глаза Гренува, Рейса-Буклерса, Тила-Бенке, Авеллино, решётчатые I и III типов. Продуктом гена TGFBI является белок кератоэпителин, участвующий в модуляции клеточной адгезии и взаимодействующий с белками внеклеточного матрикса, включая коллаген I, ламинин и фибронектин.

Многие аутосомно-доминантные офтальмопатии обусловлены мутациями в генах транскрипционных факторов, избирательно экспрессирующихся в тканях глаза. Так, например, различные мутации в гене транскрипционного фактора Pax6 могут приводить к девяти клинически самостоятельным наследственным болезням глаз, клинические проявления которых варьируют от аниридии до врожденной колобомы или катаракты. Но в отличие от заболеваний, обусловленных нарушением работы рецепторов трансформирующих или фибробластных факторов роста, генетические дефекты транскрипционных факторов чаще наблюдаются у больных с изолированной, а не синдромальной патологией.



Наследственные нарушения соедини-тельной ткани (ННСТ) или, как их еще называют в России, дисплазии соединительной ткани — одна из наиболее дискуссионных проблем клинической медицины. До недавних пор в нашей стране существовала терминологическая путаница и отсутствие единого подхода к оценке этих состояний. Главным образом, это касалось так называемых недифференцированных ННСТ, включавших все варианты врожденной «слабости» соединительной ткани за исключением моногенных синдромов Марфана, Элерса-Данло и ряда других. Отсутствие четких диагностических критериев приводило к тому, что любые случаи выявления каких-либо признаков дизэмбриогенеза произвольно обозначались как ННСТ . Подобная широкая и необоснованная трактовка приводила к гипердиагностике, создавала предпосылки для психогенных ятрогений.

Для преодоления существующих противоречий в дефинициях и критериях диагноза отдельных клинических вариантов ННСТ комитет экспертов Всероссийского научного общества кардиологов (ВНОК) разработал первые национальные рекомендации, принятые на Российском национальном конгрессе кардиологов в 2009 г. и пересмотренные в 2012 г. . Эти усилия позволили существенно сблизить подходы к диагностике ННСТ в нашей стране с международной практикой.

Термин «ННСТ» объединяет генетически и клинически гетерогенную группу заболеваний на основе общности нарушений формирования соединительной ткани в эмбриональном и постнатальном периодах. Генетическая гетерогенность ННСТ подразумевает моногенную и мультифакториальную природу заболевания. Первая реализована в группе относительно редких моногенных синдромов Марфана и Элерса-Данло, сопряженных с мутациями генов белков внеклеточного матрикса. В возникновении наиболее многочисленной группы ННСТ мультифакториальной природы значимы как мутации большого числа различных генов, так и воздействие факторов внешней среды. Клиническая гетерогенность ННСТ связана с повсеместным распространением в организме соединительной ткани и многообразием проявлений врожденной «слабости» ее отдельных компонентов.

Поскольку для большинства ННСТ отсутствуют специфические лабораторные маркеры, а молекулярно-генетические исследования остаются малодоступными и значимыми лишь по отношению к моногенным вариантам патологии, приоритет в диагностике остается за клиническими признаками. В упомянутых выше рекомендациях подобные признаки систематизированы, из них выделены те, которые имеют наибольшее диагностическое значение и включены в опубликованные зарубежные рекомендации по диагностике наиболее изученных ННСТ (Гентские критерии синдрома Марфана , Вилльфраншские критерии синдрома Элерса-Данло , Брайтонские критерии синдрома гипермобильности суставов ). Существенно, что от этих признаков четко отграничены стигмы дисэмбриогенеза (малые аномалии развития), которые хотя и выявляются при ННСТ чаще, чем в общей популяции (что подтверждает роль нарушений эмбриогенеза в формировании ННСТ), но собственно маркерами «слабости» соединительной ткани не являются. Перечень основных внешних и висцеральных маркеров ННСТ приведен в табл. 1. Совокупность выявленных признаков у конкретного пациента позволяет диагностировать тот или иной вариант соединительнотканной патологии.

В настоящее время применительно к ННСТ рекомендовано отказаться от признанных устаревшими терминов «дифференцированные» и «недифференцированные» и предложено говорить о нарушениях классифицируемых (имеющих согласованные рекомендации по диагностике) и неклассифицируемых (или диспластических фенотипах) — табл. 2 . Согласованные рекомендации по диагностике имеют: из моногенных ННСТ — синдромы Марфана и Элерса-Данло, из мультифакториальных — MASS-фенотип, первичный пролапс митрального клапана, синдром гипермобильности суставов.

Синдром Марфана — аутосомно-доминантная патология, в основе которой лежит мутации гена фибриллина-1 (FBN1). Фибриллин составляет основу эластических волокон; его особенно много в межклеточном матриксе сосудистой стенки, сердца, хрящей, хрусталика, роговицы и цинновой связки. Мутации гена FBN1 приводят к неполноценности фибриллина и нарушению структуры и функции перечисленных органов и тканей.

Диагностика синдрома Марфана основана на Гентских критериях (1996, 2010 гг.). В последней версии Гентских критериев было упразднено деление на большие и малые признаки, ряд малых признаков исключен. Одновременно было выделено два наиболее специфичных признака — дилатация и/или расслоение аорты и эктопия хрусталика и предложена балльная оценка остальных признаков для расчета степени системного вовлечения соединительной ткани (СВСТ) — табл. 3. В отсутствие семейного анамнеза диагноз синдрома Марфана может быть установлен при наличии расширения корня аорты и эктопии хрусталика либо при сочетании расширения аорты с мутацией гена FBN1 или с совокупностью признаков СВСТ на 7 и более баллов. При отягощенном семейном анамнезе диагноз правомерен, если выявляется один из специфичных признаков или если СВСТ составляет 7 и более баллов.

Синдром Элерса-Данло — гетерогенная группа коллагенопатий с различными типами наследования и общими клиническими проявлениями в виде гипермобильности суставов и повышенной эластичности кожи. Диагностика синдрома Элерса-Данло основана на Вильфраншских критериях . Вместо ранее признаваемых десяти типов болезни в настоящее время выделены шесть: классический, гипермобильный, сосудистый, кифосколиотический, артрохалазия, дерматоспараксис; для каждого из них определены большие и малые диагностические критерии. Для клинической диагностики необходимо наличие хотя бы одного большого критерия (табл. 4).

MASS-фенотип (или марфаноподобный синдром) — акроним, обозначающий пролапс митрального клапана (Mitral valve prolapse), расширение аорты (Aotic dilatation), изменения кожи (Skin) и костей скелета (Skeleton). MASS-фенотип можно диагностировать при пограничном расширении корня аорты, наличии хотя бы одного скелетного проявления и признаков СВСТ на 5 и более баллов. Как можно заметить, при отсутствии данных молекулярно-генетической диагностики MASS-фенотип трудно (если вообще возможно) отличить от синдрома Марфана с неполным набором признаков.

Пролапс митрального клапана диагностируется при систолическом смещении одной или обеих створок митрального клапана за линию клапанного кольца в парастернальной продольной позиции более чем на 2 мм. Морфологическим субстратом первичного пролапса митрального клапана как одного из вариантов ННСТ выступает миксоматоз створок, отражающий дезорганизацию коллагеновых фибрилл и накопление в них кислых гликозаминогликанов.

При оценке пролапса митрального клапана рекомендуется обращать внимание на глубину пролабирования, толщину створок и степень митральной регургитации — эти параметры существенны для прогнозирования нарушений внутрисердечной и общей гемодинамики. При высокой степени митральной регургитации и толщине створки более 5 мм (признак ее миксоматозной дегенерации) вероятность гемодинамических расстройств достоверно повышается. Придается значение и признакам СВСТ как весомому подтверждению принадлежности пролапса к ННСТ (кроме первичного существуют и вторичные пролапсы митрального клапана, не связанные с врожденной «слабостью» соединительной ткани, а развивающие при поражениях миокарда левого желудочка — миокардитах, миокардиодистрофии, коронарной патологии). Если пролабирование створок митрального клапана составляет не более 2 мм, они не утолщены, а митральная регургитация отсутствует или минимальна, оснований констатировать патологию нет. В этом случае может идти речь о варианте нормы у лиц астенической конституции или преходящем «физиологическом» пролапсе у подростков.

Первичный пролапс митрального клапана следует отличать от митрального пролапса как принадлежности моногенных ННСТ или MASS-фенотипа. Дифференциальными критериями (к сожалению, не абсолютными) являются диаметр аорты и количество признаков СВСТ.

В основе синдрома гипермобильности суставов лежат мутации генов, кодирующих коллаген, эластин, фибриллин и тенасцин Х, приводящие к слабости суставных связок. Синдром характеризуется избыточным диапазоном движений в суставах, сопровождающимся клинической симптоматикой (привычные вывихи, артралгии). При диагностике гипермобильности суставов используется девятибалльная шкала P. Beighton , предусматривающая оценку способности выполнения следующих пяти движений: пассивного сгибания V пястно-фалангового сустава более чем на 90°, пассивного приведения I пальца к предплечью, пассивного переразгибания коленных и локтевых суставов более 10°, свободного касания ладонями пола при прямых ногах. Первые четыре движения — парные (присваивается по баллу за возможность выполнить движение на каждой из сторон), последнее — непарное (максимально возможный суставной счет — 9 баллов). Гипермобильность суставов, составляющая не менее 4 баллов, и артралгии не менее чем в четырех суставах продолжительностью от трех месяцев и являются большими диагностическими критериями данной патологии.

Поскольку слабость связочного аппарата является универсальным признаком соединительнотканной недостаточности, синдром гипермобильности суставов исключается при наличии синдромов Марфана, Элерса-Данло и ряда других близких им по клиническим проявлениям ННСТ.

Неклассифицируемые ННСТ, не подходящие под согласованные критерии диагностики, встречаются в повседневной практике гораздо чаще. Многообразие их клинических вариантов систематизировано в следующие варианты: МASS-подобный фенотип, марфаноидная внешность, элерсоподобный фенотип, доброкачественная гипермобильность суставов, неклассифицируемый фенотип. Первые два из них фенотипически напоминают синдром Марфана, два следующие — синдром Элерса-Данло, не отвечая полностью критериям диагноза указанных состояний. В основу диагностики неклассифицируемых ННСТ положены те же принципы (совокупность внешних и висцеральных фенотипических проявлений), что используются при выявлении ННСТ, имеющих согласованные рекомендации, однако диагностический порог при этом менее высокий.

MASS-подобный (марфаноподобный) фенотип характеризуется пограничным значением размера корня аорты в сочетании с миопией и/или пролапсом митрального клапана и наличием признаков СВСТ менее 5 баллов (в отличие от MASS-фенотипа, при котором — 5 баллов и более).

Марфаноидная внешность характеризуется только признаками вовлечения костной системы (обычно у астеников) при отсутствии висцеральных изменений. При этом допускаются менее строгие скелетные изменения, чем те, что необходимы для констатации синдрома Марфана, однако наличие долихостеномелии и арахнодактилии признается обязательным.

Главное условие отнесения пациента к элерсоподобному фенотипу — наличие не менее двух признаков вовлечения кожи, исключая большие критерии синдрома Элерса-Данло.

Доброкачественная гипермобильность суставов констатируется на основе выявления избыточного диапазона движений в суставах, но без клинической симптоматики.

К неклассифицируемому фенотипу предложено относить случаи выявления не менее шести малых внешних и/или висцеральных признаков врожденной «слабости» соединительной ткани, не попадающие под критерии других вышеназванных синдромов и фенотипов.

Неспецифичность внешних и висцеральных маркеров «слабости» соединительной ткани, известная условность диагностических критериев диспластических фенотипов (некоторые из которых отличаются не качественно, а количественно — по числу констатированных признаков) затрудняют распознавание отдельных ННСТ. В процессе диагностики следует руководствоваться своеобразной иерархией ННСТ, составляющей непрерывный фенотипический континуум: от моногенных синдромов через диспластические фенотипы к неклассифицируемому фенотипу и норме. В соответствии с этим подходом наличие признаков синдрома Марфана или Элерса-Данло исключает диагноз неклассифицируемой ННСТ. Наличие критериев MASS-фенотипа (в числе которых фигурируют пролапс митрального клапана и изменения скелета) не дает оснований говорить о первичном пролапсе митрального клапана или марфаноидной внешности. Точно так же диагноз первичного пролапса митрального клапана отвергает заключение о любом из диспластических фенотипов. Наименьший клинический и диагностический вес имеет неклассифицируемый фенотип.

Литература

  1. Земцовский Э. В. Недифференцированные дисплазии соединительной ткани. Попытка нового осмысления концепции // Вестник медицины Северного Кавказа. 2008; 2: 8-14.
  2. Наследственные нарушения соединительной ткани в кардиологии. Диагностика и лечение. Российские рекомендации (I пересмотр) // Российский кардиологический журнал. 2013; 1 (Прил. 1): 1-32.
  3. Loeys B. L., Dietz H. C., Braverman A. C. et al. The Revised Ghent Nosology for the Marfan Syndrome // J. Med. Genetics. 2010; 4: 476-485.
  4. Beighton P., De Paepe A., Steinmann B. et al. Ehlers-Danlos syndromes: Revised nosology, Villefranche, 1997 // Am. J. Med. Genetics. 1998; 1: 31-37.
  5. Grahame R., Bird H. A., Child A. The revised (Brighton, 1998) criteria for the diagnosis of benign joint hypermobility syndrome // J. Rheumatology. 2000; 7: 1777-1779.

А. В. Клеменов 1 , доктор медицинских наук
А. С. Суслов

ГБУЗ НО ГКБ № 30, Нижний Новгород

Abstract. The article is devoted to modern concepts of terminology and nomenclature of hereditary disorders of connective tissues. The authors adduce diagnostic criteria of particular clinical variants of this pathology.