Главный компонент плазменной фибринолитической системы. Активаторы плазминогена с точки зрения их физиологического и патофизиологического значения могут быть естественного (физиологического) и бактериального происхождения.

Физиологические активаторы плазминогена

Аналогично системе свертывания, различают два пути активации плазминогена - внутренний и внешний.

Внутренний механизм запускается теми же факторами, которые инициируют свертывание крови, а именно фактором XIIa (активированный фактор Хагемана), который, взаимодействуя с прекалликреином и высокомолекулярным кининогеном плазмы, активирует плазминоген.

Контакт плазмы с инородной поверхностью через фактор XII, активирующий свертывание крови, одновременно вызывает и активацию фибринолиза. При этом в процессе активации фактора XII особый проактиватор плазминогена плазмы, идентичный прекалликреину (фактору Флетчера), переводится в активатор плазминогена, который активирует плазминоген в плазмин.

Далее оказалось, что под воздействием протеолитических ферментов на фактор XII образуются преальбуминовые фрагменты. Они, как прокоагулянты, менее активны, чем активированный фактор XII, но обладают двумя другими видами активности: возбуждают фибринолиз и образование кининов. Фрагменты фактора XII превращают проактиваторы в активатор плазминогена. Прямую активацию плазминогена вызывает калликреин. Однако в норме в крови человека свободного калликреина нет: он находится в неактивном состоянии или в комплексе с ингибиторами, поэтому активация плазминогена калликреином возможна лишь в случае значительного повышения активности кининовой системы.

Таким образом, внутренний путь фибринолиза обеспечивает активацию плазминовой системы не вслед за свертыванием крови, а одновременно с ним. Он работает по «замкнутому циклу», так как образующиеся первые порции калликреина и плазмина подвергают протеолизу фактор XII, отщепляя фрагменты, под влиянием которых нарастает трансформация прекалликреина в калликреин.

Активация по внешнему пути осуществляется, в первую очередь, за счет тканевого активатора плазминогена (ТАП), который синтезируется в клетках эндотелия, выстилающего сосуды. Идентичные или очень сходные с ним активаторы содержатся во многих тканях и жидкостях организма. Секреция тканевого активатора плазминогена из клеток эндотелия осуществляется постоянно и усиливается под влиянием разных стимулов: тромбина, ряда гормонов и лекарственных препаратов (адреналин, вазопрессин и его аналоги, никотиновая кислота), стресса, шока, тканевой гипоксии, хирургической травмы. Плазминоген и тканевой активатор плазминогена обладают выраженным сродством к фибрину. При появлении фибрина плазминоген и его активатор связываются с ним с образованием тройного комплекса (фибрин-плазминоген- тканевой активатор плазминогена), все составляющие которого расположены таким образом, что происходит эффективная активация плазминогена. В результате плазмин образуется прямо на поверхности фибрина; последний далее подвергается протеолитической деградации.

Вторым природным активатором плазминогена является урокиназа, синтезируемая почечным эпителием, которая в отличие от тканевого активатора не имеет сродства к фибрину. Активация плазминогена при этом происходит на специфических рецепторах поверхности клеток эндотелия и ряда форменных элементов крови, непосредственно участвующих в образовании тромба. В норме уровень урокиназы в плазме в несколько раз выше уровня тканевого активатора плазминогена; имеются сообщения о важной роли урокиназы в заживлении поврежденного эндотелия.

Как тканевой активатор плазминогена, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и используются в качестве лекарственных препаратов.

Бактериальные активаторы фибринолиза

К бактериальным активаторам фибринолиза относятся стрептокиназа и стафилокиназа. Так как человек в течение жизни часто болеет явными или скрытыми стрептококковыми и стафилококковыми заболеваниями, то есть возможность попадания стрептокиназы и стафилокиназы в кровь.

Стрептокиназа – мощный специфический активатор фибринолиза. Продуцируется она гемолитическим стрептококком групп A, C.

Стрептокиназа является непрямым активатором плазминогена. Она действует на проактиватор плазминогена, переводит его в активатор, который активирует плазминоген в плазмин.

Реакция между стрептокиназой и проактиватором плазминогена проходит в две стадии: в первой из проактиватора I образуется проактиватор II, во второй проактиватор II превращается в активатор, который и активирует плазминоген.

Активаторы плазминогена (АП)- высокоспецифичные сериновые протеазы регуляторного типа. Известно много АП, выделенных из крови и других биологических жидкостей и тканей человека. Они разделяются на физиологические активаторы, которые в зависимости от источника получения могут быть тканевыми (органными), сосудистыми (тканевый активатор плазминогена), плазменными, кровяными, мочевыми (урокиназа) и т.д. и выделяемые из микроорганизмов (стрептокиназа). Практически все АП образуются в виде профермен­тов (проактиваторов плазминогена).

Активирование плазминогена может быть:

внешним – под действием активаторов тканей, крови, сосудистой стенки, ко­торые высвобождаются в кровь под влиянием различных факторов;

внутрен­ним – при участии белков плазмы – фактора Хагемана, прекалликреина, высокомолекулярного кининогена;

экзогенным – после введения в орга­низм активаторов плазминогена (стрептокиназа и созданные на ее основе пре­параты, урокиназа, комплекс стрептокиназа – лиз-плазминоген; тканевый ак­тиватор плазминогена, получаемый методом генной инженерии, и другие пре­параты) с терапевтической целью.

Внутренний путь активации фибринолиза (Хагеманзависимый фибринолиз) инициируется фактором Хагемана (фактор ХП) плазмы крови. После фиксации фактора XII и комплекса высокомолекулярный кининоген-прекалликреин на чужеродной или измененной поверхности (коллаген или др.), путем ограниченного протеолиза происходит образование активного калликреина, который катализирует превращение фактора XII в его активную форму –фактор XIIa. Последний способствует превращению плазминогена в плазмин. Свободный калликреин также является прямым активатором плазминогена.

Хагеманзависимый фибринолиз активируется одновременно с включением каскада реакций образования протромбиназы по внутреннему механизму и его основное назначение – очищение сосудистого русла от фибриновых сгустков, образующихся в процессе внутрисосудистого свертывания крови. В активировании Хагеманзависимого фибринолиза могут принимать уча­стие АПГ, содержащиеся в форменных элементах крови.

Внешний путь активации плазминогена – ведущий путь при повреждении тканей, стимулируется различными тканевыми активаторами плазминогена. Важнейший из них – тканевый активатор плазминогена (тАП), которыйсинте­зируется эндотелиальными клетками кровеносных сосудов и по мере надобно­сти расходуется на активацию фибринолиза (рис.13.15).

Рис.13.15.Схема строения тАП

Его мол. масса 70 кДа, имеет один домен, структурно подобный ЭФР, 2 крингла и пальцевидный домен, что напоминает структуру плазмина. Секреция тАП эндотелиоцитами происходит не только при тромбозе сосудов, но и при сжатии манжеткой, при физических нагрузках, под влиянием вазоактивных веществ (адреналина, норадреналина) и некоторых лекарственных препаратов. Этот активатор и его ингибиторы обеспечивают постоянно действующую регуляцию фибринолитической активности. На долю тАП приходится 85 % внешней фибринолитической активности крови.

По структуре и механизму действия к тАП близки содержащиеся в раз­ных тканях другие активаторы фибринолиза, которые поступают в кровь при повреждении тканей (травмы, деструкция тканей, акушерская патология и др.). Особое место среди тканевых (органных) факторов фибринолиза занимает продуцируемая почечной тканью и эпителием мочевыводящих путей урокиназа, большая часть которой выделяется с мочой. Урокиназа обеспечивает около 10-15 % внешней фибринолитической активности крови. Она способна прони­кать внутрь тромба и там катализировать превращение плазминогена в плазмин, разрушая таким образом тромб не только снаружи, но и изнутри.

Кровяные активаторы плазминогена содержатся в клетках крови (эритроцитах, тромбоцитах и лейкоцитах) и высвобождаются при их актива­ции и разрушении, а также при тромбообразовании, особенно индуцированном эндотоксином.

Из экзогенных активаторов наиболее изучена стрептокиназа – неферментный белок (мол. м асса 47 кДа), продуцируемый β-гемолитическим стрептококком и в обычных условиях отсутствующий в крови. Стрептокиназа, как и деказа, целиаза, авелизин и другие, не обладают самостоятельной ферментативной ак­тивностью по отношению к плазмину, но, соединяясь с плазминогеном, они об­разуют комплекс, инициирующий превращение плазминогена в плазмин. Та­ким образом, стрептокиназа активирует плазминоген, связанный с фибриновым сгустком, также, как и плазминоген в растворимой фазе, что сопровождается образованием свободного плазмина. При стрептококковой инфекции возможно образование стрептокиназы в большом количестве, что может приводить к усиленному фибринолизу (фибриногенолизу) и развитию геморрагического диатеза. Превращение плазминогена в плазмин, так же, как и сам процесс лизиса фибриновых сгустков, происходит на поверхности данных сгустков. Сгустки фибри­на избирательно адсорбируют и удерживают плазминоген. Богатые лизинами участки (ЛУ), расположенные в цен­тральной части молекулы фибрин(оген)а, связываются с доменами- кринглами плазминогена, при этом одна молекула плазминогена связывается с несколькими молекулами фибрин(оген)а., что позволяет мо­лекуле плазмина действовать на новые интактные молекулы фибрина, остава­ясь связанной с субстратом и избегая при этом перехода в раствор и инактивации при контакте с a2-антиплазмином. Вместе с плазминогеном сгусток фиб­рина специфически связывает активаторы плазминогена. Тканевые активаторы плазминогена имеют низкую каталитическую активность в отсутствие фибрина и активируются при связывании с ним. Активаторы тканевого типа, за исключением урокиназы, имеют более высокое сродство к фибрину в сравне­нии с фибриногеном, что объясняет преимущественный фибринолиз и в очень слабой степени фибриногенолиз. Одновременное присутствие плазминогена и его активаторов на поверхности фибрина обеспечивает естественное формиро­вание плазмина, и фибрин расщепляется на растворимые фрагменты, получившие название продукты деградации фибрина (ПДФ).

Различные ПДФ проявляют антикоагулянтные, антиполимеризационные, антиагрегационные и другие свойства. Определение ранних и поздних ПДФ проводят для ранней диагностики изме­нений фибринолитической активности, стадий ДВС-синдромов, дифференциа­ции первичного и вторичного фибринолиза. Ни плазмин, ни активатор плазминогена не связываются с ПДФ и по мере растворения сгустка выходят в плазму, где инактивируются естественными ингибито­рами.

Оглавление темы "Эозинофилы. Моноциты. Тромбоциты. Гемостаз. Система свертывания крови. Противосвертывающая система крови.":
1. Эозинофилы. Функции эозинофилов. Функции эозинофильных лейкоцитов. Эозинофилия.
2. Моноциты. Макрофаги. Функции моноцитов - макрофагов. Нормальное количество моноцитов - макрофагов.
3. Регуляция гранулоцитопоэза и моноцитопоэза. Гранулоцитарные колониестимулирующие факторы. Кейлоны.
4. Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.
5. Тромбоцитопоэз. Регуляция тромбоцитопоэза. Тромбопоэтин (тромбоцитопоэтин). Мегакариоциты. Тромбоцитопения.
6. Гемостаз. Механизмы свертывания крови. Тромбоцитарный гемостаз. Тромбоцитарная реакция. Первичный гемостаз.
7. Система свертывания крови. Внешний путь активации свертывания крови. Факторы свертывания крови.
8. Внутренний путь активации свертывания крови. Тромбин.
9. Противосвертывающая система крови. Противосвертывающие механизмы крови. Антитромбин. Гепарин. Протеины. Простациклин. Тромбомодулин.
10. Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Тканевый активатор плазминогена - это белок, воспроизводимый и постоянно секретируемый эндотелием сосудов. Обеспечивает прямую локальную тромболитическую активность в отношении образовавшегося тромба. В крови поддерживается постоянный уровень этого фактора, что обеспечивает системную тромболитическую активность крови.

Эктоэнзимы - это образуемые эндотелием АДФаза, АТФаза и аденозинконвертирующий фермент. Эндотелиальная АДФаза быстро расщепляет проагрегант - АДФ, секретируемый активированными тромбоцитами.

Клетки эндотелия сосудов синтезируют и протромботические факторы : тканевый фактор , ингибиторы активатора плазминогена , фактор Виллебранда .

Рис. 7.11. Роль эндотелия кровеносного сосуда в свертывании крови. Под надписью «Антикоагулянты» указаны факторы эндотелия, обладающие антикоагулянтным действием, благодаря ингибиции агрегации тромбоцитов, формирования фибринового сгустка и активации фибринолиза. Под названием «Прокоагулянты» указаны факторы эндотелия, участвующие в образовании тромбоцитарного тромба, фибринового сгустка и подавляющие фибринолиз (

Тканевый фактор - это сложный белок мембраны клеток массой 46 кДа. Часть его молекулы при повреждении клетки плотно связывается с фактором коагуляции Vila, поддерживая его функцию ускорителя во внешнем пути свертывания крови.

Ингибитор активатора плазминогена -I - это белок массой 52 кДа, содержащейся в циркулирующей крови. Тесно связываясь с активатором плазминогена, он инактивирует его, участвуя таким образом в регуляции фибринолиза в организме.

Фактор Виллебранда - это многомерная молекула массой 1-20 млн Да, синтезируется эндотелием и хранится в эндотелиальных секреторных гранулах. Высвобождаясь из них, выполняет функцию адгезивной молекулы для тромбоцитов, поддерживает их агрегацию. Увеличенное высвобождение фактора Виллебранда из эндотелия индуцируется тромбином.

Свертывание крови в сосуде предупреждает и гладкая поверхность эндотелия, препятствующая включению внутреннего пути формирования активной протромбиназы. Мономолекулярный слой белка, адсорбированный на поверхности эндотелия, отталкивает факторы свертывания и тромбоциты, также предупреждает свертывание крови.

Антикоагулянты применяются в клинической практике. Например, для понижения повышенной свертываемости крови у больных с ишемической болезнью сердца, для поддержания крови в жидком состоянии при использовании аппарата искуственного кровообращения, вызывающих трав-матизацию клеток крови, в результате чего активируется внутренний путь свертывания крови.

использование рекомбинантного тканевого активатора плазминогена в лечении окклюзий вен сетчатки

УДК 616.145.154-065.6 ГРНТИ 76.29.56 ВАК 14.01.07

© С. Н. Тульцева

Кафедра офтальмологии с клиникой СПбГМУ им. академика И. П. Павлова, Санкт-Петербург

ф В представленном обзоре проведен анализ литературных данных и результатов собственных исследований о роли рекомбинантного тканевого активатора плазминогена в лечении окклюзии центральной вены сетчатки. Дана характеристика препаратов рТАП, описан механизм действия, показания и возможные осложнения при их использовании в офтальмологической практике.

ф Ключевые слова: окклюзия центральной вены сетчатки; тромболизис; тканевой активатор плаз-миногена.

Распространенность тромбозов ретинальных вен составляет около 2,14 на 1000 человек в возрасте старше 40 лет и 5,36 случаев на 1000 человек в группе старше 64 лет . При этом частота встречаемости окклюзий ветвей ЦВС (4,42 на 1000 человек) значительно превышает распространенность окклюзии центральной вены сетчатки (0,8 на 1000 человек) . Возраст больных колеблется от 14 до 92 лет. Наибольшую группу пациентов с тромбозом ретинальных вен составляют больные 40 лет и старше (в среднем 51,4-65,2 года).

В настоящее время отмечается явная тенденция к «омоложению» заболевания. Так, по нашим данным, в северо-западном регионе России в 2000 году окклюзия вен сетчатки чаще всего наблюдалась у лиц пожилого возраста - 74 % случаев. В возрастной группе до 40 лет заболевание встречалось лишь в 1 % , а в 41 - 60 лет - в 25 % случаев. В 2009 году эти цифры составляли уже 59 %, 2 % и 39 % соответственно.

Примерно 16,4 миллионов взрослого населения стран Европы и Азии имеют окклюзию вен сетчатки, при этом 2,5 миллиона страдают тромбозом ЦВС, а 13,9 миллионов - тромбозом ветвей ЦВС .

Основными причинами развития окклюзии центральной вены сетчатки считаются механическое сдавление вены склерозированной центральной артерией сетчатки в области решетчатой пластинки склеры; локальное нарушение трофики венозной стенки в месте компрессии и как следствие этого - дефект эндотелия и тромбоз. К дополнительным факторам риска относят артериальную гипертензию, гиперлипидемию, гипергликемию, тромбофи-лию, офтальмогипертензию и др.

Для восстановления нормального кровотока в центральной вене сетчатки необходимо воздействовать на две основные причины, вызвавшие ее

окклюзию. Во-первых, произвести декомпрессию сосуда. Во-вторых, произвести тромболизис. Первому направлению в лечении данной патологии посвящено множество экспериментальных и клинических исследований, смысл которых заключается в выполнении декомпрессионной нейротомии . Второе направление в нашей стране развивается медленно, и существуют лишь единичные публикации, освещающие этот вопрос . Основной причиной этого, на наш взгляд, является малодоступность современных тромболитических средств, а также недостаточный уровень теоретической подготовленности врачей первичного медицинского звена и специалистов, оказывающих неотложную помощь больным.

Для того чтобы разобраться, на какое звено гемостаза действует тот или иной тромболитический агент и в какие сроки от начала заболевания следует его применять, необходимо рассмотреть механизмы естественного фибринолиза.

Тромболизис происходит под действием плаз-мина, образующегося в результате активации его предшественника плазминогена под действием активаторов.

Различают два пути активации плазминогена - внутренний и внешний (рис. 1). Ведущий внутренний механизм запускается теми же факторами, какие инициируют свертывание крови, а именно - фактором Х11а, который, взаимодействуя с прекал-ликреином и высокомолекулярным кининогеном плазмы (ВМК), активирует плазминоген . Этот путь фибринолиза - базисный, обеспечивающий активацию плазминовой системы не вслед за свертыванием крови, а одновременно с ним. Он работает по «замкнутому циклу», так как образующиеся первые порции калликреина и плазмина подвергают протеолизу фактор XII, отщепляя фрагменты,

Рис. 1. Внутренний и внешний пути активации фибринолиза

Про-u-PA - проурокиназа; u-PA - урокиназный активатор плазминогена; t-PA - тканевой активатор плазминогена; PAI-1 - ингибитор активаторов плазминогена; КК - калли-креин; Пре-КК - прекалликреин; ВМК - высокомолекулярный кининоген; Cl-ing - ингибитор 1-го компонента комплемента; ПДФ - продукты деградации фибрина

под влиянием которых нарастает трансформация прекалликреина в калликреин.

Активация по внешнему пути осуществляется за счет тканевого активатора плазминогена (ЧРА), который образуется в клетках эндотелия, выстилающего сосуды. Секреция 1РА из клеток эндотелия осуществляется постоянно и усиливается при действии разных стимулов: тромбина, ряда гормонов и лекарственных препаратов, стресса, тканевой гипоксии, травмы.

Плазминоген и 1РА обладают выраженным сродством к фибрину. При появлении фибрина плазминоген и его активатор связываются с ним с образованием тройного комплекса (фибрин+плаз-миноген+1РА), все составляющие которого расположены так, что происходит эффективная активация плазминогена. Таким образом, плазмин образуется прямо на поверхности фибрина, который далее подвергается протеолитический деградации . Вторым природным активатором плазминогена является активатор урокиназного типа, синтезируемый почечным эпителием и макрофагами. Активация плазминогена при этом происходит на специфических рецепторах поверхности клеток эндотелия и ряда форменных элементов крови, непосредственно участвующих в образовании тромба. В норме уровень урокиназы в плазме в несколько раз выше уровня 1РА.

Образующийся под действием активаторов плазминогена плазмин - активный короткоживущий фермент (время полужизни в кровотоке 0,1 с.), приводит к протеолизу не только фибрина, но и фибриногена, факторов свертывания V, VIII и других белков плазмы. Контролируют действие плазмина несколько ингибиторов, основным из которых является быстродействующий a2-антиплазмин, син-

тезируемый в печени, а2-макроглобулин и ингибитор С1-эстеразы .

Вторым механизмом ограничения фибриноли-за является ингибиция активаторов плазминогена. Наиболее физиологически значимым является ингибитор активатора плазминогена РАЬ1. Он инактивирует как тканевой, как и урокиназный типы активаторов, синтезируется в клетках эндотелия, тромбоцитах и моноцитах. Секреция его усиливается при действии тканевого активатора плазминогена, тромбина, цитокинов, медиирующих воспаление, бактериальных эндотоксинов.

Тромболитические (от греч. thгombos - сгусток крови, lytikos - растворять) лекарственные средства подразделяют на прямые и непрямые тромбо-литики (фибринолитики). К первой группе относят вещества, непосредственно влияющие на фибрин. Представителем этой фармакологической группы является фибринолизин. Ко второй группе относят препараты, стимулирующие фибринолиз благодаря активации плазминогена (рис. 2). К ним относятся различные активаторы плазминогена - стрепто-киназа, урокиназа и др. Это первые непрямые тром-болитики, с которых началась история тромболити-ческой терапии.

Стрептокиназа получена из р-гемолитических стрептококков группы С, а урокиназа - из мочи человека. Наряду с положительными качествами эти вещества имели целый ряд недостатков: давали аллергическую реакцию, в связи с трудностью очистки представляли опасность вирусной контаминации, производство их было нерентабельным в связи с высокой стоимостью. В 80-е годы прошлого столетия на смену им пришли непрямые тромбо-литики второго поколения. К ним относятся рекомбинантный тканевой активатор плазминогена (рТАП) и рекомбинантная проурокиназа. Эти препараты созданы путем генной инженерии и, по сути, являются природными сериновыми протеазами,

Рис. 2. Принцип действия непрямых тромболитических препаратов

иТАП - ингибитор тканевого активатора плазминогена;

ПДФ - продукты деградации фибрина

т. е. веществами, участвующими в процессе тром-болизиса в естественных условиях. Представителями тромболитиков второго поколения являются актилизе, гемаза и т. д.

В настоящее время путем изменения нативной молекулы рТАП удалось улучшить свойства данной протеазы. Так появились непрямые тромболитики третьего поколения - ретеплаза, монтеплаза, ла-нетеплаза и тенектеплаза.

В офтальмологии чаще всего используются непрямые тромболитики, относящиеся ко второму (актилизе, гемаза) и третьему (тенектеплаза) поколению.

Тканевой активатор плазминогена (ТАП) в норме содержится во всех структурах глазного яблока. По мнению некоторых ученых основными источниками ТАП в глазном яблоке являются трабекулярная сеть, цилиарное тело и пигментный эпителий сетчатки . Всего 10 % тканевого активатора плазминогена, присутствующего в камерной влаге, находится в активном состоянии, остальные 90 % связаны с ингибитором PAI-1 . Какие функции выполняет тканевой активатор плазминогена, выделяемый внутриглазными структурами, и в каких процессах он участвует? На эти вопросы в настоящее время нет точных ответов.

Недостаток ТАП в слезной жидкости, влаге передней камеры, плазме крови часто ассоциируется с заболеваниями органа зрения, сопровождающимися нарушением кровообращения в венозном русле сетчатки . В связи с этим применение препаратов, созданных на основе ТАП, представляется наиболее естественным способом лечения данной патологии. По сути, такое лечение можно назвать заместительной терапией.

С 1986 года офтальмологами США, а в последствии и учеными всего мира, включая Россию, изучается влияние препарата Актилизе (Boehringer Ingelheim Pharma), содержащего рекомбинантный тканевой активатор плазминогена (рТАП) на течение различных глазных заболеваний. Основными показаниями использования рТАП в офтальмологии является патология, сопровождающаяся появлением фибринозного экссудата, сгустков крови и формированием тромбов.

Вопросы о дозах и оптимальных способах введения данного лекарственного вещества активно обсуждаются по сей день. Как и любой другой фермент, ТАП имеет высокий молекулярный вес. В связи с этим предполагалось, что его проникновение через фиброзную оболочку глазного яблока может быть затруднительным. Однако экспериментальные исследования показали, что рекомбинантный тканевой активатор плазминогена хорошо проникает

внутрь глаза через роговицу и склеру при эпибуль-барном и субконъюнктивальном способах введения . Уже через 10 минут после введения 25 мкг рТАП в субконъюнктивальное пространство происходит десятикратное повышение концентрации фермента во влаге передней камеры (с 0,8 нг/ мл до 7,5 нг/мл). Активность ТАП остается достаточной для лизиса патологического субстрата не менее 6 часов .

При лечении патологии заднего отрезка глазного яблока для достижения более быстрого тромболи-тического эффекта используют интравитреальные инъекции. Последнее время офтальмологи склоняются к мнению, что для интравитреального тромбо-лизиса целесообразно использовать минимальные дозы рТАП. Этот вывод сделан после изучения влияния различных доз фермента на сетчатку. Гистологическое исследование, выполненное после введения

25, 50, 75 и 100 мкг рТАП (Актилизе) в стекловидное тело лабораторных животных (крысы, кролики, кошки, свиньи), доказало наличие токсического эффекта при использовании дозы, превышающей 50 мкг . Наши исследования показали, что введение рТАП в стекловидное тело кролика в дозах, превышающих 20 мкг, вызывает изменения в слое пигментного эпителия сетчатки (ПЭС). Изменяется форма клеток, происходит миграция клеток ПЭС в другие слои, нарушается целостность отдельных клеток с выходом пигмента .

Является ли токсичным сам ТАП или наполнители, содержащийся в Актилизе остается не выясненным. Данные о токсичности рТАП, полученные при исследовании животных, могут только косвенно помочь выбрать адекватную и безопасную дозу препарата при лечении человека. Во-первых, несоизмеримы параметры глазного яблока (объем стекловидного тела, архитектоника сетчатки и т. д.). Во-вторых, наличие патологического субстрата в стекловидном теле (сгустки крови, фибрин) уменьшает количество свободного рТАП и тем самым могут снижать его токсичность. В-третьих, доказано, что при заболеваниях, связанных с ишемией сетчатки (диабетическая ретинопатия, ишемическая окклюзия ЦВС), доза рТАП должна быть еще меньше, так как даже при введении 50 мкг препарата происходит апоптоз клеток наружного слоя сетчатки . Особый случай - использование рТАП после витректомии и при заполнении стекловидной полости газовоздушными смесями. При этом даже небольшие дозы лекарственного вещества могут вызвать токсический эффект.

В рамках клинического исследования с 1986 года препараты рТАП используется офтальмологами в разных клинических ситуациях. Наиболее распространенными показаниями являются наличие

фибрина и сгустков крови в передней камере гла-

за, фибринозный экссудат и кровь в стекловидном теле, фибрин в области фильтрационной подушки и фистулы после антиглаукомных вмешательств, пре- и субретинальные кровоизлияния, окклюзии вен сетчатки. Используемые дозы и способы введения препарата несколько разнятся. Ранние исследования были посвящены внутривенному введению Актилизе по схеме, разработанной для лечения острого инфаркта миокарда . Однако в связи с риском развития геморрагических осложнений, а также проблемой, связанной с коротким периодом полураспада рТАП в крови (около 5 минут) от данной методики отказались. В настоящее время препараты рТАП в офтальмологической практике вводят только местно.

Для субконъюнктивального введения рекомендуемой дозой рТАП является 25 мкг, внутрикамер-ной инъекции - от 3 до 10 мкг, интравитреальных инъекций - 50 мкг препарата . В ряде работ доказан хороший тромболитический эффект от введения раствора рТАП (20 мкг/мл) в ветвь ЦВС при окклюзии основного венозного ствола . Большинство офтальмологов описывают быстрый тромболизис, отсутствие аллергических реакций и каких-либо системных осложнений при местном использовании препарата. Имеется лишь одно сообщение, свидетельствующее о токсичности рТАП, дважды введенного в стекловидную полость в дозе 50 мкг после витрэктомии и использования газовоздушной смеси с целью дислокации субретинального кровоизлияния .

Рекомбинантный тканевой активатор плазмино-гена значительно превосходит по своим качествам другие тромболитические препараты - гемазу, плазминоген, стрептокиназу и др. Он является практически незаменимым средством в лечении острой окклюзии вен сетчатки.

В условиях повышенной проницаемости сосудистой стенки, возникающей при окклюзии ЦВС, рТАП способен проникать в венозный кровоток из стекловидного тела . Именно это его свойство принято за основу при разработке нового способа лечения данной патологии - интавитреально-го введения препаратов, имеющих в основе рТАП (Актилизе - аИерІазе, Метализе - 1епеС;ер^е, Монтеплазе). Так как данные препараты, воздействуют на плазминоген, фиксированный на фибриновом сгустке (основе «свежего» тромба) при лечении заболеваний, сопровождающихся артериальным тромбозом (острого инфаркта миокарда и ОНМК) их используют в первые 6 часов от начала заболевания. В более поздние сроки тромболити-ческий эффект минимален. При лечении венозных

тромбозов срок начала лечения может быть продлен до нескольких суток.

По данным гистологического исследования на 7-14 сутки после окклюзии ЦВС начинается организация тромба . В связи с этим наилучший эффект от тромболитической терапии можно ожидать в первую неделю от начала проявлений заболевания.

Большинство зарубежных исследований, посвященных изучению тромболитического эффекта рТАП при тромбозе ЦВС, не учитывают данный факт. Так J. M. Lahey , D. S. Fong, J. Kearney (1999) , A. Glacet-Bernard, D. Kuhn, A. K. Vine с соавт. (2000) , M. J. Elman, R. Z. Raden с соавт. (2001) , J. S. Weizer, S. Fekrat (2003) , K. Suzuma, T. Murakami, D. Watanabe с соавт. (2009) вводили рТАП в стекловидное тело в среднем спустя 21 сутки от первых проявлений венозной окклюзии. Вероятно, этим объясняется сомнительный лечебный эффект, полученный авторами. Через 6 месяцев после инъекции зрение улучшалось примерно у 36 % больных. В основном это касалось пациентов с неишемическим типом окклюзии. Является это следствием применения рТАП или проявлением естественного течения заболевания - неясно, так как группа контроля и статистический анализ отсутствовали.

В литературе представлено лишь одно сообщение, свидетельствующее об интравитреальном введении рТАП в первые 3 суток от начала проявления ретинальной венозной окклюзии. N. G. Ghazi, B. Noureddine, R. S. Haddad с соавт. (2003) применяли интравитреальное введение рТАП 12 больным с окклюзией ЦВС, 4 из которых протекало по ишемическому типу. Во всех случаях, кроме ишемической окклюзии ЦВС наблюдалось значительное улучшение зрительных функций. У 55 % пациентов с исходной остротой зрения менее 20/200 в конце наблюдения зрение улучшилось до 20/50 .

В 2009 году нами было выполнено подобное исследование. Отличительными характеристиками работы являлись достаточное для оценки достоверности полученных данных количество пациентов; наличие контрольной группы; использование минимальной дозы рТАП (50 мкг); адекватные проводимой терапии сроки начала лечения. Оригинальностью лечения являлось сочетание интрави-треального введения рТАП с системным введением Вессел дуэ Ф (Alfa Wassermann). Данный препарат относится к группе гепариноидов и обладает свойством восстанавливать функцию эндотелия сосудов. Одним из известных эффектов, полученных при использовании Вессел дуэ Ф, является увеличение выработки собственного тканевого актива-

тора плазминогена и снижение активности PAI-1. Это позволяет уменьшить явления гиперкоагуляции и гипофибринолиза, имеющееся в большинстве случаев у пациентов с венозной окклюзией сетчатки .

Как показало наше исследование, острота зрения после интравитравитреальной инъекции рТАП повышалась неравномерно: максимальный скачок наблюдался через сутки после введения фермента практически у всех больных (в среднем на 0,08 -

0,1). Затем у большинства пациентов с неишемической окклюзией ЦВС происходило медленное повышение зрения в течение последующих 6 месяцев. В случаях ишемической окклюзии ЦВС острота зрения либо стабилизировалась, либо со временем ухудшалась.

Результаты оптической когерентной томографии сетчатки показали связь улучшения зрения в ближайшие сутки после интравитреальной инъекции рТАП с регрессией макулярного отека. Возможно, этот эффект объяснялся стимулированием отслойки задней гиалоидной мембраны стекловидного тела.

Все данные о клинических исследованиях, посвященных изучению влияния рТАП, введенного в стекловидное тело, на течение тромбоза вен сетчатки представлены в сводной таблице (табл. 1).

Еще одним методом лечения окклюзий ЦВС является эндоваскулярная тромболитическая терапия. Впервые эндоваскулярный тромболизис был выполнен пациентке с ишемической окклюзией ЦВС N. J. Weiss в 1998 году . В основе предложенной операции лежала стандартная трехпортовая ви-трэктомия с последующей канюлизацией одной из ветвей вены сетчатки и болюсным введением рТАП в дозе 20 мкг/0,1 мл. В дальнейшем J. N. Weiss и L. A. Bynoe опубликовали результаты лечения 28 пациентов, перенесших окклюзию ЦВС, которым лечение проводилось аналогичным способом . Учитывая отсутствие опыта проводимого хирургического вмешательства, а также непредсказуемость конечного результата лечения, операцию выполняли только в тяжелых, практически бесперспективных в плане восстановления зрительных функций случаях. Все пациенты имели полную окклюзию ЦВС давностью в среднем 4,9 месяцев (от 0,25 до 30 месяцев). Через 12 месяцев после операции у 22 пациентов острота зрения улучшилась как минимум на 1 строчку. Осложнения в виде кровоизлияния в стекловидное тело наблюдались у 7 человек, при этом лишь у одного пациента пришлось выполнить дополнительные хирургические манипуляции. Авторы утверждали, что этот метод обладает рядом преимуществ перед другими способами введения

тромболитиков: препарат доставляется точно туда, где он нужен, - к месту локализации тромба; имеется визуальный контроль при введении; введение очень небольшой дозы может обеспечить достаточную концентрацию вблизи тромба; в зависимости от скорости тока препарата его введение может иметь «смывающий» эффект, сместить тромб и позволить расширить ЦВС.

Параллельно с клиническими исследованиями в 2002 - 2008 годах продолжались экспериментальные работы, направленные на отработку техники операции, разработку специальной стеклянной канюли, используемой для катетеризации перипа-пиллярной венулы. Также с помощью гистологического исследования подбиралась необходимая для тромболизиса доза препарата и рассчитывалась безопасная для сосудов сетчатки скорость введения раствора.

Y. T. Hu, Z. Z. Ma, X. L. Zhang с соавт. (2003) экспериментально доказали эффективность эндо-васкулярного тромболизиса при лечении окклюзий ЦВС. При этом было отмечено, что лечебное воздействие оказывается не «смывающим эффектом» вводимого раствора, как предполагали J. N. Weiss и L. A. Bynoe, а именно тромболитическим действием рТАП. Авторы пришли к выводу, что наиболее оптимальной скоростью введения раствора рТАП является 60 мл/час, а время инфузии не должно превышать 20 минут . M. K. Tameesh, R. R. Lakhanpal, G. Y. Fujii с соавт. (2004) для достижения хорошего тромболитического эффекта потребовалось введение 200-1000 мкг рТАП, со скоростью 0,05 мл/мин в течение 25-45 минут . Основная сложность при катетеризации венулы ЦВС заключается в выполнении прокола стенки сосуда. Также в связи с прозрачностью вводимого раствора существует трудность в оценке точности попадания и направления движения жидкости. Наличие эффекта обратного тока при удалении канюли иногда приводит к излитию крови в стекловидное тело. Для облегчения манипуляции K. Suzuki, Y. Suzuki, S. Mizukochi с соавт. (2008) предложили использовать смесь рТАП, сбалансированного солевого раствора (BSS) и индоцианина зеленого (ICG) в соотношении 50 мкг/1 мл/0,5 мг. Благодаря флюоресценции в инфракрасном диапазоне краситель позволяет полностью контролировать манипуляцию, а использование специальной стеклянной микроканюли диаметром 30-40 мкм сводит травму сосуда к минимуму .

В настоящее время во всем мире большое внимание уделяется исследованию роли рекомбинантного тканевого активатора плазминоге-на в фармакологическом витреолизисе. Понятие «фармакологический витреолизис» подразумева-

Таблица 1

Клинические исследования, посвященные изучению влияния рТАП

Интравитреальное введение рТАП Тип и вид окклюзии Количество пациентов; сроки наблюдения; количество рТАП Начало лечения Результаты и осложнения

Lahey J. M., Fong D. S., Kearney J. (1999) окклюзия ЦВС - 23; гемиретинальная окклюзия - 3 Всего 26 пациентов; срок наблюдения 6 месяцев До 21 суток включительно У 69,6% пациентов острота зрения улучшилась или стабилизировалась; у 30,4% - ухудшилась; у 1 пациента развилось кровоизлияние в стекловидное тело; неоваскулярных осложнений не было

Glacet-Bernard A., Kuhn D., Vine A. K. с соавт. (2000) Неишемическая окклюзия ЦВС - 10; ишемическая окклюзия ЦВС - 3; неишемическая окклюзия ЦВС и окклюзией цилиоретинальной артерии - 2 Всего 15 пациентов; срок наблюдения - 6 месяцев; 75-100 мкг рТАП 1-е сутки - 1 пациент; 2-е сутки - 1 пациент; 4-6 сутки - 7 пациентов; 8 сутки - 2 пациента; 14-е сутки - 2 пациента; 21-е сутки - 2 пациента В 2 случаях неишемическая окклюзия перешла в ишемическую; в 4 случаях первоначальная ишемия сетчатки усугубилась; в 1 случае развилась неоваскуляризация радужки; в 1 случае - неоваскуля-ризация сетчатки; у всех больных исходная острота зрения < 20/40; в конце наблюдения в 36% случаев острота зрения > 20/30; в 36% - не изменилась; в 28% < 20/200; между 1-7 сутками после инъекции произошла отслойка задней гиалоидной мембраны стекловидного тела

Elman M. J., Robert Z. с соавт. (2001) Неишемическия окклюзия ЦВС - 5; ишемическая окклюзия ЦВС - 4 Всего 9 пациентов; срок наблюдения - 6 месяцев; 100 мкг рТАП Не менее 1 месяца после проявления заболевания Улучшение зрения у всех пациентов с неишемической окклюзией и незначительное улучшение зрения у 2 пациентов с ишемической окклюзией; в 1 случае развилась неоваску-ляризация радужки (у больного с сахарным диабетом)

Weizer J. S., Fekrat S. (2003) Неишемическая окклюзия ЦВС - 1 Всего 1 пациент; срок наблюдения - 14 дней; 50 мкг рТАП 21 день от начала заболевания Через 14 дней - улучшилась острота зрения; полная резорбция макулярного отека; восстановление кровотока в вене

Ghazi N. G., Noureddine B., Haddad R. S. с соавт. (2003) Неишемическая и ишемическая окклюзия ЦВС Всего 12 пациентов; срок наблюдения 6 месяцев 1-3 сутки от начала заболевания Исходная острота зрения у 9 пациентов 20/200; у остальных - менее 20/50; к концу наблюдения у 8 (67 %) пациентов зрение равно или выше 20/50; у 4 (33 %) пациентов зрение не изменилось или ухудшилось (ишемическая окклюзия)

Suzuma K., Murakami T., Watanabe D. с соавт. (2009) Окклюзия ЦВС - 37; окклюзия ЦВС и диабетическая ретинопатия - 5 Всего 42 пациента; срок наблюдения не указан Начало лечения не указано Лучшая острота зрения наблюдалась у больных без диабетической ретинопатии; у 62 % больных с окклюзией ЦВС развилась задняя отслойка стекловидного тела; при наличии диабетической ретинопатии положительной динамики не наблюдалось

Варганова Т. С., Астахов Ю. С., Тульцева С. Н. (2009) Неишемическая окклюзия ЦВС - 24; ишемическая окклюзия ЦВС - 28; группа контроля - 52 Всего 52 пациента; срок наблюдения 6 месяцев; 50 мкг рТАП 1 -3 сутки - 17 пациентов; 4-7 сутки - 20 пациентов; 8-14 сутки - 15 пациентов Повышение зрения с 0,2 до 0,4 на 10 сутки и до 0,6 через 6 месяцев после инъекции при неишемической окклюзии; с 0,04 до 0,1 на 10 сутки и до 0,3 через 6 месяцев при ишемической окклюзии; осложнений нет; неоваскуляриза-ция на ДЗН у 2 пациентов, сетчатки - у 1 пациента с ишемической окклюзией

ет стимулирование отслойки задней гиалоидной мембраны (ЗГМ) стекловидного тела путем ин-травитреального введения различных фармакологических препаратов. Доказано, что в глазах с ишемической окклюзией ЦВС, имеющих полную отслойку ЗГМ стекловидного тела, практически не развивается неоваскуляризация сетчатки и ДЗН и значительно реже наблюдается персистирующий макулярный отек . В связи с этим лечение, направленное на удаление или стимулирование отслойки ЗГМ, сведет перечисленные осложнения к минимуму.

Экспериментальные исследования доказали, что введение в стекловидное тело даже небольших доз рТАП (25 мкг) в 100 % случаев приводит к полной отслойке ЗГМ в глазах подопытных животных. По-видимому, этот эффект связан с резким повышением концентрации плазмина в стекловидном теле. Концентрация других веществ (гиалуроновой кислоты, трансглутаминазы, витронектина) после введения рТАП не меняется . Тканевой активатор плазминогена разжижает стекловидное тело и, по-видимому, повышая количество плазмина, воздействует на вещества, играющие роль биоклея между ЗГМ и передней пограничной пластинкой. К таким веществам относятся фибронектин, ламинин и коллаген IV типа .

Клинические исследования доказали факт появления отслойки ЗГМ стекловидного тела у больных с тромбозом ЦВС после интравитреальной инъекции рТАП. По данным Murakami T., Takagi H., Ohashi H. с соавт. (2007), в 16 из 21 глаза после введения рТАП наблюдалось отслоение ЗГМ, быстрое повышение остроты зрения и уменьшение макулярного отека . Suzuma K., Murakami T., Watanabe D. с соавт. (2009), используя данный вид витреолизиса, получили ожидаемый эффект в 64 % случаев. Однако авторы обращают внимание на то, что при сочетании тромбоза вен сетчатки и диабетической ретинопатии после введения рТАП в стекловидное тело ни в одном из случаев ЗГМ не отслаивалась .

Использование препаратов рТАП при лечении окклюзий вен сетчатки представляется очень перспективным направлением. Чтобы определить показания, противопоказания, оптимальный срок начала лечения и способ введения рТАП, необходимо провести многоцентровое рандомизированное исследование.

СПИСОК ЛИТЕРАТУРЫ

1. Варганова Т. С. Оптимизация патогенетического лечения окклюзии центральной вены сетчатки: Автрореф. дисс. ... к. м. н.,

СПб, 2009. - 21 стр.

2. Петрачков Д. В. Новый комплексный способ лечения тромбоза центральной вены сетчатки и ее ветвей // Бюллетень сибирской медицины. - 2008. - № 1. - С. 99-101.

3. Тульцева С. Н., Астахов Ю. С. Этиологические факторы развития тромбоза вен сетчатки у пациентов молодого возраста // Регионарное кровообращение и микроциркуляция. - 2004. - № 4 (12). - С. 39-42.

4. Тульцева С. Н., Астахов Ю. С., Умникова Т. С. Современные способы лечения тромбозов ретинальных вен // Сборник тезисов. VIII съезд офтальмологов России. Москва, 1-4 июня 2005 г. Тезисы докладов. - М., 2005. - С. 372-373.

5. Тульцева С. Н. Эндотелиальные регуляторы фибринолиза у больных с тромбозом вен сетчатки // Офтальмологические ведомости. - 2009. - Т. II, № 1. - С. 4-11.

6. Тульцева С. Н., Варганова Т. С., Рахманов В. В. Тромболитиче-ская терапия при лечении тромбозов вен сетчатки // Офтальмологические ведомости. - 2009. - Т. II, № 2. - С. 6-14.

7. Тульцева С. Н. Лечение внутриглазных кровоизлияний и фибриновых экссудатов рекомбинантным тканевым активатором плаз-миногена: Автореф. дисс. ... к. м. н. - СПб., 1995. - 14 с.

8. Berker N., Batman C. Surgical treatment of central retinal vein occlusion // Acta Ophthalmol. - 2008. - Vol. 86. - P. 245-252.

9. Chen S. N., Yang T. C., Ho C. L. et al. Retinal toxicity of intravitreal tissue plasminogen activator: case report and literature review // Ophthalmology. - 2003. - Vol. 110, N 4. - P. 704-708.

10. Collen D., Lijen H. R. Tissue-type plasminogen activator: a historical perspective and personal account // J. Thromb. Haemost. - 2004. - Vol. 2. - P. 541-546.

11. Dabbs C. K., Aaberg T. M., AguilarH. E. et al. Complications of tissue plasminogen activator therapy after vitrectomy for diabetes // Am. J. Ophthalmol. - 1990. - Vol. 110. - P. 354-360.

12. David R., Zangwill L., Badarna M. et al. Epidemiology of retinal vein occlusion and its association with glaucoma and increased intraocular pressure // Ophthalmologica - 1988. - Vol. 197. - P. 69-74.

13. Diaz-Llopis M, Cervera E. Posterior vitreous detachment and pharmacologic vitreolysis: the new age of enzymatic vitrectomy // Arch. Soc. Esp. Oftalmol. - 2007. - Vol. 82, N 8. - P. 465-466.

14. Elman M. J., Raden R. Z., Carrigan A. Intravitreal injection of tissue plasminogen activator for central retinal vein occlusion // Trans. Am. Ophthalmol. Soc. - 2001. - Vol. 99. - P. 219-221; discussion 222-223.

15. Elman M. J. Thrombolytic therapy for central retinal vein occlusion: results of a pilot study // Trans. Am. Ophthalmol. Soc. - 1996. - Vol. 94. - P. 471-504.

16. Geanon J. D., Tripathi B. J., Tripathi R. C. et al. Tissue plasminogen activator in avascular tissues of the eye: a quantitative study of its activity in the cornea, lens, and aqueous and vitreous humors of dog, calf, and monkey // Exp. Eye Res. - 1987. - Vol. 44. - P. 55-63.

17. Ghazi N. G., Noureddine B., Haddad R. S. et al. Intravitreal tissue plasminogen activator in the management of central retinal vein occlusion // Retina. - 2003. - Vol. 23, N 6. - P. 780-784.

18. Glacet-Bernard A., Kuhn D., Vine A. K. et al. Treatment of recent onset central retinal vein occlusion with intravitreal tissue plas-

minogen activator: a pilot study // Br. J. Ophthalmol. - 2000. - Vol. 84, N 6. - P. 609-613.

19. Hesse L., Nebeling B., Schroeder B. et al. Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy // Exp. Eye Res. - 2000. - Vol. 70, N 1. - P. 31-39.

20. Hikichi T., Konno S., Trempe C. L. Role of the vitreous in central retinal vein occlusion // Retina. - 1995. - Vol. 15, N 1. - P. 29-33.

21. Hrach C. J., Johnson M. W., Hassan A. S. et al. Retinal toxicity of commercial intravitreal tissue plasminogen activator solution in cat eyes // Arch Ophthalmol. - 2000. - Vol. 118, N 5. - P. 659-663.

22. Hu Y. T., Ma Z. Z, Zhang X. L. et al. Experiment study of infusing tPA in retinal vein for treatment of retinal vein occlusion // Zhong-hua Yan Ke Za Zhi. - 2003. - Vol. 39, N 11. - P. 645-649.

23. Jaffe G. J., Green G. D., McKay Bs. et al. Intravitreal clearance of tissue plasminogen activator in the rabbit // Arch Ophthalmol. - 1988. - Vol. 106, N 7. - P. 969-972.

24. Johnson M. W., Olsen K. R., Hernandez E. et al. Retinal Toxicity of Recombinant Tissue Plasminogen Activator in the Rabbit // Arch. Ophthalmol. - 1990. - Vol. 108. - P. 259-263

25. Kwaan H. C., Samama M. M., Nguyen G. Fibrinolytic systems // Clinical thrombosis / Kwaan H. C., Samama M. M. eds. - Boca Raton: CRC Press, 1989. - P. 23-31.

26. Lahey J. M., Fong D. S., Kearney J. Intravitreal tissue plasminogen activator for acute central retinal vein occlusion // Ophthalmic Surg Lasers. - 1999. - Vol. 30, N 6. - P. 427-434.

27. Lam H. D., Blumenkranz M. S. Treatment of central retinal vein occlusion by vitrectomy with lysis of vitreopapillary and epipap-illary adhesions, subretinal peripapillary tissue plasminogen activator injection, and photocoagulation // Am. J. Ophthalmol. - 2002. - Vol. 134, N 4. - P. 609-611.

28. Lim J. I., Fiscella R., Tessler H. et al. Intraocular penetration of topical tissue plasminogen activator // Arch. Ophthalmol. - 1991. - Vol. 109. - P. 714-717.

29. Lim J. I., Maguire A. M., John G. et al. Intraocular tissue plasminogen activator concentrations after subconjunctival delivery // Ophthalmology. - 1993. - Vol. 100. - P. 373-376.

30. Mahmoud T. H., Peng Y. W., Proia A. D. et al. Recombinant tissue plasminogen activator injected into the vitreous cavity may penetrate the retinal veins of a porcine model of vascular occlusion // Br. J. Ophthalmol. - 2006. - Vol. 90, N 7. - P. 911-915.

31. Murakami T., Takagi H., Kita M. et al. Intravitreal tissue plasminogen activator to treat macular edema associated with branch retinal vein occlusion // Am. J. Ophthalmol. - 2006. - Vol. 142, N 2. - P. 318-320.

32. Murakami T., Takagi H., Ohashi H. et al. Role of posterior vitreous detachment induced by intravitreal tissue plasminogen activator in macular edema with central retinal vein occlusion // Retina. - 2007. - Vol. 27, N 8. - P. 1031-1037.

33. Murakami T., Tsujikawa A., Ohta M. et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator // Am. J. Ophthalmol. - 2007. - 143. - P. 171-173.

34. Opremcak E. M., Bruce R. A., Lomeo M. D. et al. Radial optic neurotomy for central retinal vein occlusion: a retrospective pilot study of 11 consecutive cases // Retina. - 2001. - Vol. 21, N 5. - P. 408-415.

35. Osterloh M. D., Charles S. Surgical decompression of branch retinal vein occlusions // Arch Ophthalmol. - 1988. - Vol. 106, N 10. - P. 1469-1471.

36. Park J. K., Tripathi R. C., Tripathi B. J. et al. Tissue plasminogen activator in the trabecular endothelium // Invest. Ophthalmol. Vis. Sci. - 1987. - Vol. 28. - P. 1341-1345.

37. Rijken D. C., Otter M., Kuiper J. et al. Receptor-mediated endocy-tosis of tissue-type plasminogen activator (t-PA) by liver cells // Thromb. Res. - 1990. - Vol. 10, Suppl. - P. 63-71.

38. Rogers S., McIntosh R. L., Cheung N. et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia // Ophthalmology. - 2010. - Vol. 117, N 2. - P. 313-319.

39. Rowley S. A., Vijayasekaran S., Yu P. K. et al. Retinal toxicity of intravitreal tenecteplase in the rabbit // Br. J. Ophthalmol. - 2004. - Vol. 88, N 4. - P. 573-578.

40. Suzuki K., Suzuki Y., Mizukoshi S. et al. Indocyanine green as useful guide for retinal vein cannulation and injection of tissue plasminogen activator in rabbits // Tohoku J. Exp. Med. - 2008. - Vol. 214. N 4. - P. 351-358.

41. Suzuma K., Murakami T., Watanabe D. et al. Intravitreal tissue plasminogen activator for treatment of central retinal vein occlusion associated with diabetic retinopathy // Nippon Ganka Gakkai Zasshi. - 2009. - Vol. 113. N 4. - P. 492-497.

42. Tameesh M. K., Lakhanpal R. R., Fujii G. Y., Javaheri M. Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (t-PA) for the treatment of experimental retinal vein occlusion in dogs // Am. J. Ophthalmol. - 2004. - Vol. 138, N 5. - P. 829-839.

43. Textorius O, Stenkula S. Toxic ocular effects of two fibrinolytic drugs: an experimental electroretinographic study on albino rabbits // Arch. Ophthalmol. - 1983. - Vol. 61. - P. 322-331.

44. Tripathi R. C., Park J. K., Tripathi B. J. et al. Tissue plasminogen activator in human aqueous humor and its possible therapeutic significance // Am. J. Ophthalmol. - 1988. - Vol. 106. - P. 719-722.

45. Weiss J. N., Bynoe L. A. Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion // Ophthalmology. - 2001. - Vol. 108, N 12. - P. 2249-2257.

46. Weiss J. N. Treatment of central retinal vein occlusion by injection of tissue plasminogen activator into a retinal vein // Am. J. Ophthalmol. - 1998. - Vol. 126, N 1. - P. 142-144.

47. Weitz J. I., Stewart R. J., Fredenburgh J. C. Mechanism of action of plasminogen activators // Thromb. Haemost. - 1999. - Vol. 82. - P. 974-982.

48. Weizer J. S., Fekrat S. Intravitreal tissue plasminogen activator for the treatment of central retinal vein occlusion // Ophthalmic Surg. Lasers Imaging. - 2003. - Vol. 34, N 4. - P. 350-352.

49. Yamamoto T., Kamei M., Kunavisaruet P. et al. Increased retinal toxicity of intravitreal tissue plasminogen activator in a central retinal vein occlusion model // Graefes Arch. Clin. Exp. Ophthalmol. - 2008. - Vol. 246. - P. 509-514.

THE USE OF RECOMBINANT TISSUE PLASMINOGEN ACTIVATOR IN TREATMENT OF RETINAL VEIN OCCLUSIONS

G Summary. In the present review, a comparative analysis is performed of literature data and of own studies results concerning the recombinant tissue plasminogen activator’s role in treatment of central retinal vein occlusion. A specification of rTPA preparations is given, their mechanism of action, indications, and possible complications of their use in ophthalmologic practice are described.

G Key words: central retinal vein occlusion; thrombolysis; tissue plasminogen activator.

Тульцева Светлана Николаевна - к. м. н., доцент, кафедра офтальмологии СПбГМУ им. акд. И. П. Павлова,

197089, Санкт-Петербург, ул. Л. Толстого, д. 6-8. корпус 16. E-mail: [email protected]

Tultseva Svetlana Nikolaevna - candidate of medical science, assistant professor, Department of Ophthalmology of the I. P. Pavlov State Medical University of St.Petersburg, 197089, Saint-Petersburg, Lev Tolstoy st., 6-8, building 16. E-mail: [email protected]

Входит в состав препаратов

Входит в перечень (Распоряжение Правительства РФ № 2782-р от 30.12.2014):

ЖНВЛП

АТХ:

B.01.A.D.02 Алтеплаза

Фармакодинамика:

Человеческий тканевый активатор плазминогена (рекомбинантный): активация плазминогена, превращение плазминогена в плазмин, разрушение фибрина, фибриногена, факторов свертывания крови V и VIII.

Фармакологические эффекты

Тромболитический.

Фармакокинетика:

Биотрансформация происходит в печени. T1/2 - 35 мин. Элиминация почками (80% - в виде метаболитов).

Показания:

Инфаркт миокарда (в первые 6-12 ч), острая массивная тромбоэмболия легочной артерии, острый ишемический инсульт, тромбоз периферических артерий нижних конечностей

IX.I20-I25.I21 Острый инфаркт миокарда

IX.I26-I28.I26 Легочная эмболия

Противопоказания:

Геморрагический васкулит, геморрагическая ретинопатия, одновременный прием непрямых антикоагулянтов. Тяжелое или опасное кровотечение (продолжающееся или недавно перенесенное), нарушение мозгового кровообращения (внутричерепное кровоизлияние, геморрагический инсульт), в том числе в течение последних 6 мес. Новообразования ЦНС и другой локализации, сопровождающиеся повышенным риском возникновения кровотечения, аневризма, интракраниальные хирургические вмешательства или операции на позвоночнике (в анамнезе за последние 2 мес). Тяжелая травма (в течение последних десяти дней), травматический открытый массаж сердца (в течение последних 10 дней). Акушерское родоразрешение (в течение последних 10 дней). Оперативные вмешательства, пункции кровеносных сосудов с низким давлением: например, подключичной или яремной вены (в течение последних 10 дней). Тяжелая неконтролируемая АГ. Бактериальный эндокардит, перикардит. Язвенная болезнь желудка и двенадцатиперстной кишки (в течение 3 мес после начала обострения), острый панкреатит.

Артериальные или венозные мальформации.Печеночная недостаточность, цирроз печени, портальная гипертензия, активный гепатит. Варикозное расширение вен пищевода. Возраст пациента старше 70 лет.

С осторожностью:

Недавно перенесенные небольшие травмы в результате биопсии, пункции сосудов, в/м инъекции, массажа сердца и другие состояния, сопровождающиеся риском развития кровотечений.

Беременность и лактация:

Беременность

Категория рекомендаций FDA не определена. Контролируемые исследования на человеке и животных не проводились. Предполагается, что тромболитические средства, вводимые в течение первых 18 нед беременности, повышают риск преждевременного отделения плаценты, поскольку она прикрепляется к матке преимущественно с помощью фибрина.

Кормление грудью

Нет сведений о проникновении в грудное молоко и об осложнениях. Ввиду экскреции многих лекарственных препаратов молоком следует с осторожностью назначать тромболитические средства кормящим женщинам.

Способ применения и дозы:

ОИМ.В первые 6 ч - внутривенно болюсом в дозе 15 мг в течение 1-2 мин, после чего - инфузионное введение в дозе 50 мг в течение 30 мин и 35 мг - за 60 мин до достижения максимальной дозы (100 мг). Пациентам с массой тела менее 65 кг - внутривенно болюсом в дозе 15 мг и по 0,75 мг/кг в течение 30 мин (максимум - 50 мг); затем - инфузия по 0,5 мг/кг в течение 60 мин (максимум - 35 мг). Через 6-12 ч после возникновения симптомов препарат вводят внутривенно болюсно в дозе 10 мг, и 50 мг - инфузионно в течение первого часа, а затем в дозе 10 мг в течение 30 мин (до максимальной дозы 100 мг в течение 3 ч). Пациентам с массой тела менее 65 кг препарат назначают в дозе, не превышающей 1,5 мг/кг.

Одновременно назначают ацетилсалициловую кислоту и . Ацетилсалициловую кислоту - по 160-300 мг/сут после возникновения симптомов в течение нескольких месяцев; - перед началом тромболитической терапии внутривенно болюсно в дозе 5 тыс. ME, затем - по 1 тыс. ME/ч с учетом показателей АЧТВ (активированное частичное тромбопластиновое время), измеренного несколько раз (значения должны в 1,5-2,5 раза превосходить исходные).

Острая массивная тромбоэмболия легочной артерии в сочетании с нестабильной гемодинамикой. Внутривенно болюсно в дозе 10 мг в течение 1-2 мин, затем - по 90 мг внутривенно в течение 2 ч. Общая доза препарата у пациентов с массой тела менее 65 кг не должна превышать 1,5 мг/кг. Если ПВ превышает исходное менее чем в 2 раза, то одновременно назначают (под контролем АЧТВ). При массивной тромбоэмболии легочной артерии с нестабильной гемодинамикой препарат действует так же, как . Введение альтеплазы в суммарной дозе 100 мг в течение 2 ч сравнимо с действием ретеплазы, стрептокиназы в дозе 1,5 млн МЕ в течение 2 ч, урокиназы в дозе 1 млн ЕД болюсом в течение 10 мин (затем - по 2 млн ЕД внутривенно в течение 2 ч) и более эффективно, чем внутривенное капельное введение гепарина натрия по 1750 МЕ/ч. В последнем случае чаще возникают побочные эффекты.

Острый ишемический инсульт - тромболизис (в том числе альтеплаза 0,9 мг/кг до 90 мг в 100 мл 0,9% натрия хлорида. 10% дозы в виде болюса, остальное - внутривенно в течение 1 ч; альтеплаза 0,85 мг/кг внутривенно в течение 60 мин в первые 90 мин и 91-180 мин после начала заболевания); альтеплаза (рекомбинантный тканевый активатор плазминогена) 1,1 мг/кг до 100 мг внутривенно, 10% дозы в виде болюса, остальное внутривенно в течение 1 ч;

При местном применении в случае тромбоза периферических артерий нижних конечностей альтеплаза превосходит урокиназу. При тромбозе мозговых артерий введение 2 млн ЕД/сут альтеплазы имеет преимущества перед внутривенным применением 60 тыс. ЕД/сут урокиназы в течение 7 дней.

Применение у детей

Эффективность и безопасность не изучены.

При внутрисосудистом тромбозе препарат назначают внутривенно струйно (в стерильной воде для инъекций до получения раствора с концентрацией 1 мг/мл) или капельно (в 0,9% растворе натрия хлорида, пока концентрация не достигнет 200 мкг/мл). Нельзя разводить препарат раствором декстрозы. Новорожденным препарат вводят по 100-500 мкг/кг в час в течение 3-6 ч; детям в возрасте 1 мес-18 лет - по 100-500 мкг/кг в час в течение 3-6 ч (максимальная суточная доза - 100 мг). Перед назначением повторного курса необходим ультразвуковой мониторинг ответа на первый курс.

При окклюзии артериовенозных шунтов или катетеров детям в возрасте 1 мес-18 лет препарат вводят непосредственно в катетер в дозе не более 2 мл (в зависимости от типа катетера) раствора с концентрацией 1 мг/мл; лизат аспирируют через 4 ч, после чего катетер промывают 0,9% раствором натрия хлорида. О применении препарата при тромбозах артерий или вен у новорожденных сведений нет.

Побочные эффекты:

Гематологические: кровотечения, смертельные внутричерепные кровотечения (при применении в остром периоде ишемического инсульта).Со стороны сердечно-сосудистой системы: боль в груди, аритмии, гипотензия, не связанная с кровотечением или аритмией. Гиперчувствительность: аллергические реакции.Прочие: лихорадка.

Передозировка:

Кровотечения. Лечение: переливание свежезамороженной плазмы, цельной крови, плазмозамещающих растворов, синтетических ингибиторов фибринолиза.

Взаимодействие:

Риск кровотечений повышается при одновременном использовании производных кумарина, антиагрегантов, гепарина и других ЛС, угнетающих свертывание крови.

Особые указания:

При остром коронарном синдроме целесообразно проведение тромболизиса. Он способствует снижению смертности и экономически выгоден. Не обнаружено различий в выживаемости после применения тканевого активатора плазминогена, стрептокиназы и анизолированного плазминоген-стрептокиназного комплекса; обсуждается продолжительность и схема тромболитической терапии. Дополнительное лечение антикоагулянтами и антиагрегантами, вероятно, повышает эффективность тромболитической терапии.

Чем раньше проведен тромболизис, тем он эффективнее. Именно поэтому тромболизис нужно ввести в повседневную практику лечебных учреждений. Следует принимать во внимание риск необходимости реанимационных мероприятий, связанных с проведением тромболизиса.

В амбулаторной практике препаратом выбора считают урокиназу (болюсное введение тенектеплазы или ретеплазы), в стационарных условиях - стрептокиназу (кроме случаев, когда пациенты получали ее ранее). Новые средства (альтеплаза) более дорогостоящи и поэтому не могут быть препаратами первой линии. Примерная стоимость курса лечения одного больного при использовании ингибитора тканевого активатора тромбопластина составляет 2900 долларов, с применением стрептокиназы - 400 долларов, анизолированного плазминоген-стрептокиназного комплекса - 1900 долларов, урокиназы - 775 долларов.

Руководители и администраторы здравоохранения, кардиологи стационаров должны содействовать проведению тромболизиса врачами общей практики.

Мониторинг коагулограммы (АЧТВ, фибриноген, продукты деградации фибрина, тромбиновое время), гематокрита, концентрации гемоглобина, количества тромбоцитов, электрокардиограммы (при тромбозе коронарной артерии); при тромбозе сосудов головного мозга - контроль психического и неврологического статуса (до начала лечения и периодически во время приема препарата). Для оценки лечения в динамике используют один или несколько критериев; артериальное давление, пульс и частоту дыхания определяют регулярно.

Риск развития геморрагических осложнений возрастает при применении доз препарата, превышающих 100 мг.

Следует соотносить потенциальный риск и пользу применения альтеплазы после недавно перенесенных незначительных травм (биопсия, пункция сосудов, внутримышечные инъекции, массаж сердца) и при других состояниях, сопровождающиеся риском развития кровотечений, при беременности, в течение первых 10 сут послеродового периода (повышенный риск кровотечений), во время кормления грудью, в пожилом возрасте и у детей.

Гепарин натрия перед проведением тромболитической терапии отменяют; следующее введение возможно после тромболизиса и возвращения показателей тромбинового времени и/или АЧТВ к двукратным значениям контроля и ниже (обычно через 2-4 ч).

Инструкции