Кровь представляет собой взвесь (суспензию) клеток, которые находятся в плазме, состоящей из белковых и жировых молекул. К реологическим свойствам относятся вязкость и стабильность суспензии. Они определяют легкость ее движения – текучесть. Для улучшения микроциркуляции применяют инфузионную терапию, препараты, снижающие свертывание и соединение клеток в сгустки.

Читайте в этой статье

Нарушение реологии крови

Свойства крови, которые определяют ее прохождение по кровеносной системе, зависят от таких факторов:

  • соотношения жидкой (плазменной) части и клеток (преимущественно эритроцитов);
  • белкового состава плазмы;
  • формы клеток;
  • скорости движения;
  • температуры.

Нарушения реологии проявляется в виде изменения вязкости и стабильности состояния суспензии. Они бывают местными (при воспалении или венозном застое), а также общими – при шоке или слабости сердечной деятельности. От реологических свойств зависит поступление кислорода, питательных веществ к клеткам.

Вязкость крови

При замедлении кровотока эритроциты располагаются не вдоль сосуда (как в норме), а в разных плоскостях, что снижает текучесть крови. В таком случае сосудам и сердцу требуются повышенные усилия для ее продвижения. Для измерения вязкости определяется такой показатель, как . Он вычисляется делением объема клеток крови на весь объем. При нормальном состоянии вязкости в крови находится 45% клеток и 55% плазмы. Гематокрит здорового человека равен 0,45.

Чем выше этот показатель, тем хуже реологические характеристики крови, так как ее вязкость выше.

На уровень гематокрита может повлиять кровотечение, обезвоживание или, наоборот, избыточное разведение крови (например, при интенсивной инфузионной терапии). Охлаждение повышает гематокрит более чем в 1,5 раза.

Сладж-феномен

Если нарушается суспензионная стабильность, то есть взвешенное состояние эритроцитов, то кровь может разделиться на жидкую часть (плазму) и сгусток из эритроцитов, тромбоцитов и лейкоцитов. Это становится возможным благодаря объединению, прилипанию, склеиванию клеток. Такое явление называется сладжем, что в переводе означает ил или густую грязь. Сладж клеток крови приводит к тяжелому нарушению микроциркуляции.

Причины возникновения феномена разделения (сепарации) крови:

  • недостаточность кровообращения из-за слабости сердца;
  • застой крови в венах;
  • спазм артерий или закупорка их просвета;
  • заболевания крови с избыточным образованием клеток;
  • обезвоживание при рвоте, поносе, приеме мочегонных;
  • воспаление стенки сосуда;
  • аллергические реакции;
  • опухолевые процессы;
  • нарушение клеточного заряда при дисбалансе электролитов;
  • повышенное содержание белка в плазме.

Сладж-феномен приводит к понижению скорости движения крови, вплоть до ее полной остановки. Прямолинейное направление меняется на турбулентное, то есть возникают завихрения потока. Из-за большого количества скоплений кровяных клеток происходит сброс из артериальных в венозные сосуды (открываются шунты), образуются тромбы.

На тканевом уровне нарушаются процессы транспорта кислорода, питательных элементов, замедляются обмен веществ и восстановление клеток при повреждении.

Смотрите на видео о реологии крови и качестве сосудов:

Методы измерения реологии крови

Для исследования вязкости крови используют приборы, которые называются вискозиметрами или реометрами. В настоящее время распространены два типа:

  • ротационные – кровь вращается в центрифуге, ее сдвиговое течение рассчитывается при помощи гемодинамических формул;
  • капиллярные – кровь течет по трубке заданного диаметра под воздействием известной разницы давлений на концах, то есть воспроизводится физиологический режим кровотока.

Ротационные вискозиметры состоят из двух цилиндров разного диаметра, один из которых вложен в другой. Внутренний соединен с динамометром, а внешний вращается. Между ними находится кровь, она начинает перемещаться благодаря своей вязкости. Модификацией ротационного реометра является прибор с цилиндром, который свободно плавает в жидкости (аппарат Захарченко).


Ротационный реометр

Зачем нужно знать о гемодинамике

Так как на состояние кровотока оказывают большое влияние такие механические факторы, как давление в сосудах и скорость перемещения потока, то для их изучения применимы основные законы гемодинамики. С их помощью можно установить связь между основными параметрами кровообращения и свойствами крови.

Движение крови по сосудистой системе осуществляется благодаря разности давлений, она перемещается из зоны высокого к низкому. На этот процесс оказывают влияние вязкость, суспензионная стабильности и сопротивление стенок артерий. Последний показатель самый высокий в артериолах, так как у них наибольшая длина при небольшом диаметре. Основная сила сердечных сокращений тратится именно на продвижение крови в эти сосуды.

Сопротивление артериол в свою очередь сильно зависит от их просвета, на который действуют различные факторы внешней среды и стимулы вегетативной нервной системы. Эти сосуды называют кранами организма человека.

Длина может измениться в период роста, а также при работе скелетной мускулатуры (региональные артерии).

Во всех остальных случаях длина считается постоянным фактором, а просвет сосуда и вязкость крови относятся к переменным значениям, они определяют состояние кровотока.

Оценка показателей

Основными характеристиками гемодинамики в организме являются:

  • Ударный объем – это количество крови, которое поступает в сосуды при сокращении сердца, его норма 70 мл.
  • Фракция выброса – отношение систолического выброса в мл к остаточному объему крови в конце диастолы. Она составляет около 60%, если снижается до 45, то это признак систолической дисфункции (сердечной недостаточности). При падении ниже 40% состояние оценивается как критическое.
  • Артериальное давление – систолическое от 100 до 140, диастолическое от 60 до 90 мм рт. ст. Все показатели ниже этого диапазона являются признаком гипотонии, а более высокие свидетельствуют об артериальной гипертензии.
  • Общее периферическое сопротивление рассчитывается как отношение среднего артериального давления (диастолический показатель и треть от пульсового) к выбросу крови за минуту. Измеряется в дин х с х см-5, составляет от 700 до 1500 единиц в норме.

Для оценки реологических показателей определяют:

  • Содержание эритроцитов. В норме 3,9 — 5,3 млн/мкл, оно понижено при анемии, опухолях. Высокие показатели бывают при лейкозах, хроническом дефиците кислорода, сгущении крови.
  • Гематокрит. У здоровых людей находится в пределах от 0,4 до 0,5. Повышен при , нарушениях дыхания, опухолях или кистах почек, обезвоживании. Снижается при анемии, избыточном вливании жидкостей.
  • Вязкость. Нормой считается около 23 мПа×с. Увеличивается при атеросклерозе, сахарном диабете, болезнях дыхательной, пищеварительной систем, патологии почек, печени, приеме мочегонных, алкоголя. Снижается при анемии, интенсивном поступлении жидкости.

Препараты, улучшающие реологию крови

Для облегчения движения крови при повышенной вязкости используют:

  • Гемодилюцию – разведение крови при помощи переливания плазмозаменителей (Реополиглюкин, Гелофузин, Волювен, Рефортан, Стабизол, Полиглюкин);
  • антикоагулянтную терапию – , Фраксипарин, Фрагмин, Фенилин, Синкумар, Вессел Дуэ Ф, Цибор, Пентасан;
  • антиагреганты – Плавикс, Ипатон, Кардиомагнил, Аспирин, Курантил, Иломедин, Брилинта.

Помимо препаратов применяется плазмаферез для удаления избытка белка из плазмы и улучшения суспензионной стабильности эритроцитов, а также или ультрафиолетовым светом.

Реологические и гемодинамические свойства крови определяют доставку кислорода и питательных веществ к тканям. Первые зависят от соотношения количества клеток крови и объема жидкой части, а также стабильности клеточной взвеси в плазме. Показателями реологии крови является вязкость, гематокрит, содержание эритроцитов.

Гемодинамические параметры кровотока определяются при измерении давления, сердечного выброса и периферического сопротивления. Нарушения скорости потока крови приводит к замедлению обмена веществ в тканях. Для улучшения текучести используют медикаменты – плазмозаменители, антикоагулянты, антиагреганты.

Читайте также

Если заметить первые признаки тромба, можно предотвратить катастрофу. Какие симптомы, если тромб в руке, ноге, голове, сердце? Какие признаки образования, оторвавшегося? Что представляет собой тромб и какие вещества участвуют в его формировании?

  • Довольно часто используется Никотиновая кислота, для чего ее назначают в кардиологии - для улучшения обмена веществ, при атеросклерозе и т.д. Применение таблеток возможно даже в косметологии от облысения. Показания включают и проблемы с работой ЖКТ. Хоть и редко, но иногда вводится внутримышечно.
  • Церебральный атеросклероз сосудов головного мозга угрожает жизни пациентов. Под его воздействием человек меняется даже по характеру. Что делать?
  • Сравнительно недавно начало применяться лазерное облучение крови ВЛОК. Процедура сравнительно безопасна. Аппараты с иглой напоминают по принципу действия обычные капельницы. Внутривенное облучение имеет противопоказания, например, кровотечения и диабет.
  • Довольно важный показатель крови - гематокрит, норма которого отличается у детей и взрослых, у женщин в обычном состоянии и при беременности, а также у мужчин. Как берут анализ? Что нужно знать?
  • Министерство образования Российской Федерации

    Пензенский Государственный Университет

    Медицинский Институт

    Кафедра Терапии

    Зав. кафедрой д.м.н.

    «РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ИХ НАРУШЕНИЯ ПРИ ИНТЕНСИВНОЙ ТЕРАПИИ»

    Выполнила: студентка V курса

    Проверил: к.м.н., доцент

    Пенза

    План

    Введение

    1. Физические основы гемореологии

    2. Причина «неньютоновского поведения» крови

    3. Основные детерминанты вязкости крови

    4. Гемореологические нарушения и венозные тромбозы

    5. Методы изучения реологических свойств крови

    Литература

    Введение

    Гемореология изучает физико-химические свойства крови, которые определяют ее текучесть, т.е. способность к обратимой деформации под действием внешних сил. Общепринятой количественной мерой текучести крови является ее вязкость.

    Ухудшение текучести крови типично для больных, находящихся в отделении интенсивной терапии. Повышенная вязкость крови создает дополнительное сопротивление кровотоку и поэтому сопряжена с избыточной постнагрузкой сердца, микроциркуляторными расстройствами, тканевой гипоксией. При гемодинамическом кризе вязкость крови возрастает и из-за снижения скорости кровотока. Возникает порочный круг, который поддерживает стаз и шунтирование крови в микроциркуляторном русле.

    Расстройства в системе гемореологии представляют собой универсальный механизм патогенеза критических состояний, поэтому оптимизация реологических свойств крови является важнейшим инструментом интенсивной терапии. Уменьшение вязкости крови способствует ускорению кровотока, увеличению DO 2 к тканям, облегчению работы сердца. С помощью реологически активных средств можно предотвратить развитие тромботических, ишемических и инфекционных осложнений основного заболевания.

    В основу прикладной гемореологии положен ряд физических принципов текучести крови. Их понимание помогает выбрать оптимальный метод диагностики и лечения.


    1. Физические основы гемореологии

    В нормальных условиях почти во всех отделах кровеносной системы наблюдают ламинарный тип кровотока. Его можно представить в виде бесконечного множества слоев жидкости, которые движутся параллельно, не смешиваясь друг с другом. Некоторые из этих слоев соприкасаются с неподвижной поверхностью - сосудистой стенкой и их движение, соответственно, замедляется. Соседние слои по-прежнему стремятся в продольном направлении, но более медленные пристеночные слои их задерживают. Внутри потока, между слоями возникает трение. Появляется параболический профиль распределения скоростей с максимумом в центре сосуда. Пристеночный слой жидкости можно считать неподвижным. Вязкость простой жидкости остается постоянной (8 с. Пуаз), а вязкость крови меняется в зависимости от условий кровотока (от 3 до 30 с Пуаз).

    Свойство крови оказывать «внутреннее» сопротивление тем внешним силам, которые привели ее в движение, получило название вязкости η. Вязкость обусловлена силами инерции и сцепления.

    При показателе гематокрита, равном 0, вязкость крови приближается к вязкости плазмы.

    Для корректного измерения и математического описания вязкости вводят такие понятия, как напряжение сдвига с и скорость сдвига у . Первый показатель представляет собой отношение силы трения между соседними слоями к их площади - F / S . Он выражается в дин/см 2 или паскалях*. Второй показатель является градиентом скорости слоев - дельтаV / L . Его измеряют в с -1 .

    В соответствии с уравнением Ньютона напряжение сдвига прямо пропорционально скорости сдвига: τ= η·γ. Это означает, что чем больше разница скорости между слоями жидкости, тем сильнее их трение. И, наоборот, выравнивание скорости слоев жидкости уменьшает механическое напряжение по линии водораздела. Вязкость в данном случае выступает в качестве коэффициента пропорциональности.

    Вязкость простых, или ньютоновских, жидкостей (например, воды) постоянна при любых условиях движения, т.е. между напряжением сдвига и скоростью сдвига для этих жидкостей существует прямолинейная зависимость.

    В отличие от простых жидкостей кровь способна менять свою вязкость при изменении скоростного режима кровотока. Так, в аорте и магистральных артериях вязкость крови приближается к 4-5 относительным единицам (если принять вязкость воды при 20 °С в качестве эталонной меры). В венозном же отделе микроциркуляции, несмотря на малое напряжение сдвига, вязкость возрастает в 6-8 раз относительно своего уровня в артерии (т.е. до 30-40 относительных единиц). При крайне низких, нефизиологических скоростях сдвига вязкость крови может возрасти в 1000 раз (!).

    Таким образом, зависимость между напряжением сдвига и скоростью сдвига для цельной крови носит нелинейный, экспоненциальный характер. Подобное «реологическое поведение крови»* называют «неньютоновским».

    2. Причина «неньютоновского поведения» крови

    «Неньютоновское поведение» крови обусловлено ее грубо дисперсным характером. С физико-химической точки зрения кровь может быть представлена как жидкая среда (вода), в которой взвешена твердая, нерастворимая фаза (форменные элементы крови и высокомолекулярные вещества). Частицы дисперсной фазы достаточно крупны, чтобы противостоять броуновскому движению. Поэтому общим свойством таких систем является их неравновесность. Компоненты дисперсной фазы постоянно стремятся к выделению и осаждению из дисперсной среды клеточных агрегатов.

    Основной и реологически наиболее значимый вид клеточных агрегатов крови - эритроцитарный. Он представляет собой многомерный клеточный комплекс с типичной формой «монетного столбика». Характерные его черты - обратимость связи и отсутствие функциональной активизации клеток. Структура эритроцитарного агрегата поддерживается преимущественно глобулинами. Известно, что эритроциты больного с исходно повышенной скоростью оседания после их добавления к одногруппной плазме здорового человека начинают оседать с нормальной скоростью. И наоборот, если эритроциты здорового человека с нормальной скоростью оседания поместить в плазму больного, то выпадение их в осадок значительно ускорится.

    К естественным индукторам агрегации относят в первую очередь фибриноген. Длина его молекулы в 17 раз превышает ширину. Благодаря такой асимметрии фибриноген способен перекидываться в виде «мостика» с одной клеточной мембраны на другую. Образующаяся при этом связь непрочна и разрывается под действием минимального механического усилия. Подобным же образом действуют а 2 - и бета-макроглобулины, продукты деградации фибриногена, иммуноглобулины. Более тесному сближению эритроцитов и их необратимому связыванию между собой препятствует отрицательный мембранный потенциал.

    Следует подчеркнуть, что агрегация эритроцитов - процесс скорее нормальный, чем патологический. Положительная его сторона заключается в облегчении пассажа крови через систему микроциркуляции. При образовании агрегатов снижается отношение поверхности к объему. Как следствие, сопротивление агрегата трению оказывается значительно меньше, чем сопротивление отдельных его составляющих.

    3. Основные детерминанты вязкости крови

    Вязкость крови подвержена влиянию многих факторов. Все они реализуют свое действие, меняя вязкость плазмы или реологические свойства форменных элементов крови.

    Содержание эритроцитов. Эритроцит - основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови. Так, при возрастании Ht с 30 до 60 % относительная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % - втрое. Гемодилюция, напротив, снижает вязкость крови.

    Термин «реологическое поведение крови» (rheologicalbehavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.

    Деформационная способность эритроцитов. Диаметр эритроцита приблизительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритроцит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря способности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95-100 %.

    Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов - энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.

    Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.

    В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1 / 15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плазма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком капилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки форменных элементов крови с минимальным трением.

    Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критического характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2-3 раза. В клинической картине начинают преобладать симптомы тяжелых расстройств микроциркуляции: снижение зрения и слуха, сонливость, адинамия, головная боль, парестезии, кровоточивость слизистых оболочек.

    Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возникают под влиянием комплекса факторов. Действие последних в критической ситуации носит универсальный характер.

    Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3-5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деградации фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохимическая ситуация - «реотоксемия».

    Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повышенной активности.

    Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздошные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.

    4. Гемореологические нарушения и венозные тромбозы

    Замедление скорости движения в венозном отделе кровообращения провоцирует агрегацию эритроцитов. Однако инерция движения может оказаться достаточно большой и форменные элементы крови будут испытывать повышенную деформационную нагрузку. Под ее влиянием из эритроцитов высвобождается АТФ - мощный индуктор тромбоцитарной агрегации. Низкая скорость сдвига стимулирует также адгезию молодых гранулоцитов к стенке венул (феномен Farheus-Vejiens). Образуются необратимые агрегаты, которые могут составить клеточное ядро венозного тромба.

    Дальнейшее развитие ситуации будет зависеть от активности фибринолиза. Как правило, между процессами образования и рассасывания тромба возникает неустойчивое равновесие. По этой причине большинство случаев тромбоза глубоких вен нижних конечностей в госпитальной практике протекает скрыто и разрешается спонтанно, без последствий. Применение дезагрегантов и антикоагулянтов оказывается высокоэффективным способом профилактики венозных тромбозов.

    5. Методы изучения реологических свойств крови

    «Неньютоновский» характер крови и связанный с ним фактор скорости сдвига обязательно должны учитываться при измерении вязкости в клинической лабораторной практике. Капиллярная вискозиметрия основана на токе крови через градуированный сосуд под действием силы тяжести, поэтому физиологически некорректна. Реальные же условия кровотока моделируются на ротационном вискозиметре.

    К принципиальным элементам такого прибора относят статор и конгруентный ему ротор. Зазор между ними служит рабочей камерой и заполняется пробой крови. Движение жидкости инициируется вращением ротора. Оно в свою очередь произвольно задается в виде некоей скорости сдвига. Измеряемой величиной оказывается напряжение сдвига, возникающего как механический или электрический момент, необходимый для поддержания выбранной скорости. Вязкость крови затем рассчитывают по формуле Ньютона. Единицей измерения вязкости крови в системе СГС является Пуаз (1 Пуаз = 10 дин x с/см 2 = 0,1 Па x с = 100 отн. ед.).

    Обязательным считают измерение вязкости крови в диапазоне низких (<10 с -1) и высоких (>100 с -1) скоростей сдвига. Низкий диапазон скоростей сдвига воспроизводит условия кровотока в венозном отделе микроциркуляции. Определяемая вязкость носит название структурной. Она в основном отражает наклонность эритроцитов к агрегации. Высокие же скорости сдвига (200-400 с -1) достигаются invivo в аорте, магистральных сосудах и капиллярах. При этом, как показывают реоскопические наблюдения, эритроциты занимают преимущественно осевое положение. Они вытягиваются в направлении движения, их мембрана начинает вращаться относительно клеточного содержимого. За счет гидродинамических сил достигается почти полная дезагрегация клеток крови. Вязкость, определенная при высоких скоростях сдвига, зависит преимущественно от пластичности эритроцитов и формы клеток. Ее называют динамической.

    В качестве стандарта исследования на ротационном вискозиметре и соответствующей нормы можно использовать показатели по методике Н.П. Александровой и др.

    Для более детального представления реологических свойств крови проводят еще несколько специфических тестов. Деформационную способность эритроцитов оценивают по скорости пассажа разведенной крови через микропористую полимерную мембрану (d=2-8 мкм). Агрегационную активность красных клеток крови изучают с помощью нефелометрии по изменению оптической плотности среды после добавления в нее индукторов агрегации (АДФ, серотонина, тромбина или адреналина).

    Диагностика гемореологических нарушений . Расстройства в системе гемореологии, как правило, протекают латентно. Их клинические проявления неспецифичны и малозаметны. Поэтому определяют диагноз по большей части лабораторные данные. Ведущим его критерием выступает величина вязкости крови.

    Основное направление сдвигов в системе гемореологии у больных, находящихся в критическом состоянии, - переход от повышенной вязкости крови к пониженной. Этой динамике, однако, сопутствует парадоксальное ухудшение текучести крови.

    Синдром повышенной вязкости крови. Он носит неспецифический характер и широко распространен в клинике внутренних болезней: при атеросклерозе, стенокардии, хроническом обструктивном бронхите, язвенной болезни желудка, ожирении, сахарном диабете, облитерирующем эндартериите и др. При этом отмечают умеренное повышение вязкости крови до 35 сПуаз при у=0,6 с -1 и 4,5 сПуаз при у==150 с -1 . Микроциркуляторные нарушения, как правило, маловыражены. Они прогрессируют только по мере развития основного заболевания. Синдром повышенной вязкости крови у больных, поступающих в отделение интенсивной терапии, следует рассматривать в качестве фонового состояния.

    Синдром низкой вязкости крови. По мере развертывания критического состояния вязкость крови вследствие гемодилюции снижается. Показатели вискозиметрии составляют 20-25 сПуаз при у=0,6 с -1 и 3-3,5 сПуаз при y=150 с -1 . Подобные величины можно прогнозировать по Ht, который обычно не превышает 30-35 %. В терминальном состоянии снижение вязкости крови доходит до стадии «очень низких» значений. Развивается выраженная гемодилюция. Ht снижается до 22-25 %, динамическая вязкость крови - до 2,5-2,8 сПуаз и структурная вязкость крови - до 15-18 с Пуаз.

    Низкая величина вязкости крови у больного в критическом состоянии создает обманчивое впечатление гемореологического благополучия. Несмотря на гемодилюцию, при синдроме низкой вязкости крови микроциркуляция существенно ухудшается. В 2-3 раза повышается агрегационная активность красных клеток крови, в 2-3 раза замедляется прохождение эритроцитарной суспензии через нуклеопорные фильтры. После восстановления Ht путем гемоконцентрации invitro в таких случаях обнаруживают гипервязкость крови.

    На фоне низкой или очень низкой вязкости крови может развиться массивная агрегация эритроцитов, которая полностью блокирует микроциркуляторное русло. Это явление, описанное М.Н. Knisely в 1947 г. как «sludge»-феномен, свидетельствует о развитии терминальной и, видимо, необратимой фазы критического состояния.

    Клиническую картину синдрома низкой вязкости крови составляют тяжелые микроциркуляторные нарушения. Заметим, что их проявления неспецифичны. Они могут быть обусловлены другими, не реологическими механизмами.

    Клинические проявления синдрома низкой вязкости крови:

    Тканевая гипоксия (в отсутствие гипоксемии);

    Повышенное ОПСС;

    Тромбозы глубоких вен конечностей, рецидивирующая легочная тромбоэмболия;

    Адинамия,сопор;

    Депонирование крови в печени, селезенке, подкожных сосудах.

    Профилактика и лечение. Больные, поступающие в операционную или отделение интенсивной терапии, нуждаются в оптимизации реологических свойств крови. Это предотвращает образование венозных тромбов, снижает вероятность ишемических и инфекционных осложнений, облегчает течение основного заболевания. Наиболее эффективные приемы реологической терапии - это разведение крови и подавление агрегационной активности ее форменных элементов.

    Гемодилюция. Эритроцит - основной носитель структурного и динамического сопротивления кровотоку. Поэтому гемодилюция оказывается наиболее действенным реологическим средством. Благотворный ее эффект известен давно. На протяжении многих веков кровопускание было едва ли не самым распространенным методом лечения болезней. Появление низкомолекулярных декстранов стало следующим этапом в развитии метода.

    Гемодилюция увеличивает периферический кровоток, но в то же время снижает кислородную емкость крови. Под влиянием двух разнонаправленных факторов складывается, в конечном итоге, DО 2 к тканям. Она может повыситься вследствие разведения крови или, напротив, существенно сократиться под влиянием анемии.

    Максимально низкий Ht, которому соответствует безопасный уровень DО 2 , называют оптимальным. Точная его величина до сих пор остается предметом дискуссий. Количественные соотношения Ht и DО 2 хорошо известны. Однако не представляется возможным оценить вклад индивидуальных факторов: переносимости малокровия, напряженности тканевого метаболизма, гемодинамического резерва и др. По общему мнению цель лечебной гемодилюции - Ht 30-35 %. Однако опыт лечения массивных кровопотерь без гемотрансфузии показывает, что еще большее снижение Ht до 25 и даже 20 % с точки зрения кислородного обеспечения тканей вполне безопасно.

    В настоящее время для достижения гемодилюции используют в основном три приема.

    Гемодилюция в режиме гиперволемии подразумевает такое переливание жидкости, которое приводит к существенному увеличению ОЦК. В одних случаях кратковременная инфузия 1-1,5 л плазмозаменителей предваряет вводный наркоз и хирургическое вмешательство, в других случаях, требующих более длительной гемодилюции, снижения Ht добиваются постоянной нагрузкой жидкостью из расчета 50-60 мл/кг массы тела больного в сутки. Снижение вязкости цельной крови - основное следствие гиперволемии. Вязкость плазмы, пластичность эритроцитов и их наклонность к агрегации при этом не меняются. К недостаткам метода следует отнести риск объемной перегрузки сердца.

    Гемодилюция в режиме нормоволемии была предложена первоначально как альтернатива гетерологическим трансфузиям в хирургии. Суть метода заключается в дооперационном заборе 400-800 мл крови в стандартные контейнеры со стабилизирующим раствором. Контролируемую кровопотерю, как правило, восполняют одномоментно с помощью плазмозаменителей из расчета 1:2. При некоторой модификации метода возможна заготовка 2-3 л аутокрови без каких-либо побочных гемодинамических и гематологических последствий. Собранную кровь затем возвращают во время операции или после нее.

    Нормоволемическая гемодилюция не только безопасный, но малозатратный метод аутодонорства, обладающий выраженным реологическим эффектом. Наряду со снижением Ht и вязкости цельной крови после эксфузии отмечается стойкое уменьшение вязкости плазмы и агрегационной способности эритроцитов. Активизируется поток жидкости между интерстициальным и внутрисосудистым пространством, вместе с ним усиливаются обмен лимфоцитов и поступление иммуноглобулинов из тканей. Все это в конечном итоге ведет к сокращению послеоперационных осложнений. Этот метод можно широко применять при плановых хирургических вмешательствах.

    Эндогенная гемодилюция развивается при фармакологической вазоплегии. Снижение Ht в этих случаях обусловлено тем, что из окружающих тканей в сосудистое русло поступает обедненная белками и менее вязкая жидкость. Подобным эффектом обладают эпидуральная блокада, галогенсодержащие анестетики, ганглиоблокаторы и нитраты. Реологический эффект сопутствует основному терапевтическому действию этих средств. Степень снижения вязкости крови не прогнозируется. Она определяется текущим состоянием волемии и гидратации.

    Антикоагулянты. Гепарин получают путем экстракции из биологических тканей (легких крупного рогатого скота). Конечный продукт представляет собой смесь полисахаридных фрагментов с разной молекулярной массой, но со сходной биологической активностью.

    Наиболее крупные фрагменты гепарина в комплексе с антитромбином III инактивируют тромбин, в то время как фрагменты гепарина с мол.м-7000 воздействуют преимущественно на активированный фактор X.

    Введение в раннем послеоперационном периоде высокомолекулярного гепарина в дозе 2500-5000 ЕД под кожу 4-6 раз в сутки стало широко распространенной практикой. Подобное назначение в 1,5-2 раза снижает риск тромбозов и тромбоэмболий. Малые дозы гепарина не удлиняют активированного частичного тромбопластинового времени (АЧТВ) и, как правило, не вызывают геморрагических осложнений. Гепаринотерапия наряду с гемодилюцией (намеренной или побочной) - это основные и наиболее эффективные методы профилактики гемореологических расстройств у хирургических больных.

    Низкомолекулярные фракции гепарина обладают меньшим сродством к тромбоцитарному фактору Виллебранда. В силу этого они по сравнению с высокомолекулярным гепарином, еще реже вызывают тромбоцитопению и кровотечение. Первый опыт применения низкомолекулярного гепарина (клексан, фраксипарин) в клинической практике дал обнадеживающие результаты. Препараты гепарина оказались эквипотенциальны традиционной гепаринотерапии, а по некоторым данным даже превышали ее профилактический и лечебный эффект. Помимо безопасности, низкомолекулярные фракции гепарина отличаются также экономным введением (1 раз в сутки) и отсутствием необходимости в мониторинге АЧТВ. Выбор дозы, как правило, проводится без учета массы тела.

    Плазмаферез. Традиционное реологическое показание к плазмаферезу - синдром первичной гипервязкости, который обусловлен избыточной продукцией аномальных белков (парапротеинов). Их удаление приводит к быстрому обратному развитию болезни. Эффект, однако, непродолжительный. Процедура носит симптоматический характер.

    В настоящее время плазмаферез активно применяют для предоперационной подготовки больных с облитерирующими заболеваниями нижних конечностей, тиреотоксикозом, язвенной болезнью желудка, при гнойно-септических осложнениях в урологии. Это приводит к улучшению реологических свойств крови, активизации микроциркуляции, значительному сокращению числа послеоперационных осложнений. Производят замену до 1 / 2 объема ОЦП.

    Снижение уровня глобулинов и вязкости плазмы после одной процедуры плазмафереза может быть существенным, но кратковременным. Основным же благотворным эффектом процедуры, который распространяется на весь послеоперационный период, является так называемый феномен ресуспендирования. Отмывание эритроцитов в среде, свободной от белков, сопровождается стабильным улучшением пластичности эритроцитов и снижением их агрегационной наклонности.

    Фотомодификация крови и кровезаменителей. При 2-3 процедурах внутривенного облучения крови гелий-неоновым лазером (длина волны 623 нм) малой мощности (2,5 мВт) наблюдается отчетливый и продолжительный реологический эффект. По данным прецизионной нефелометрии под влиянием лазеротерапии снижается число гиперергических реакций тромбоцитов, нормализуется кинетика их агрегации invitro. Вязкость крови остается неизменной. Аналогичным эффектом обладают также УФ-лучи (с длиной волны 254-280 нм) в экстракорпоральном контуре.

    Механизм дезагрегационного действия лазерного и ультрафиолетового излучения не совсем ясен. Предполагают, что фотомодификация крови вызывает сначала образование свободных радикалов. В ответ возбуждаются механизмы антиоксидантной защиты, которые блокируют синтез естественных индукторов тромбоцитарной агрегации (в первую очередь простагландинов).

    Предложено также ультрафиолетовое облучение коллоидных препаратов (например, реополиглюкина). После их введения динамическая и структурная вязкость крови снижается в 1,5 раза. Существенно угнетается и тромбоцитарная агрегация. Характерно, что немодифицированный реополиглюкин не способен воспроизвести все эти эффекты.

    Литература

    1. «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

    2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина.- 2000.- 464 с.: ил.- Учеб. лит. Для слушателей системы последипломного образования.- ISBN 5-225-04560-Х

    Гемореология изучает физико-химические свойства крови, которые определя­ют ее текучесть, т.е. способность к обратимой деформации под действием внешних сил. Общепринятой количественной мерой текучести крови является ее вязкость.

    Ухудшение текучести крови типично для больных, находящихся в отделении интенсивной терапии. Повышенная вязкость крови создает дополнительное сопротивление кровотоку и поэтому сопряжена с избыточной постнагрузкой сердца, микроциркуляторными расстройствами, тка­невой гипоксией. При гемодинамическом кризе вязкость крови возраста­ет и из-за снижения скорости кровотока. Возникает порочный круг, ко­торый поддерживает стаз и шунтирование крови в микроциркуляторном русле.

    Расстройства в системе гемореологии представляют собой универсальный механизм патогенеза критических состоя­ний, поэтому оптимизация реологических свойств крови является важнейшим инструментом интенсивной терапии. Уменьшение вязкости крови способствует ускорению кро­вотока, увеличению DO 2 к тканям, облегчению работы сердца. С помощью реологически активных средств можно предотвратить развитие тромботических, ишемических и инфекционных осложнений основного заболевания.

    В основу прикладной гемореологии положен ряд физических принципов текучести крови. Их понимание помогает выбрать оптимальный метод диагностики и лечения.

    Физические основы гемореологии.

    В нормальных условиях почти во всех отделах кровеносной системы наблюдают ламинарный тип кровотока. Его можно представить в виде бесконечного множества слоев жидкости, которые движутся параллельно, не смешиваясь друг с другом. Некоторые из этих слоев соприкасаются с неподвижной поверхностью - сосудистой стенкой и их движение, соответственно, замедляется. Соседние слои по-прежнему стремятся в продольном направлении, но более медленные пристеночные слои их задерживают. Внутри потока, между слоями возникает трение. Появляется параболический профиль распределения скоростей с максимумом в центре сосуда. Пристеночный слой жидкости можно счи­тать неподвижным (рис. 23.1). Вязкость простой жидкости остается посто­янной (8 сПуаз), а вязкость крови меняется в зависимости от условий кро­вотока (от 3 до 30 с Пуаз).

    Свойство крови оказывать «внутреннее» сопротивление тем внешним силам, которые привели ее в движение, получило название вязкости. Вязкость обусловлена силами инер­ции и сцепления.

    При показателе гематокрита, равном 0, вяз­кость крови приближается к вязкости плазмы.

    Для корректного измерения и математического описания вязкости вводят такие понятия, как напряжение сдвига с и скорость сдвига у . Первый по­казатель представляет собой отношение силы трения между соседними сло­ями к их площади - F / S . Он выражается в дин/см 2 или паскалях*. Второй показатель является градиентом скорости слоев - дельтаV / L . Его измеряют в с -1 .

    В соответствии с уравнением Ньютона напряжение сдвига прямо пропорционально скорости сдвига: . Это означает, что чем больше раз­ница скорости между слоями жидкости, тем сильнее их трение. И, наоборот, выравнивание скорости слоев жидкости уменьшает механическое напряжение по линии водораздела. Вязкость в данном случае выступает в качестве коэффициента пропорциональности.

    Вязкость простых, или ньютоновских, жидкостей (например, воды) постоянна при любых условиях движения, т.е. между напряжением сдвига и скоростью сдвига для этих жидкостей существует прямолинейная зависимость.

    В отличие от простых жидкостей кровь способна менять свою вязкость при изменении скоростного режима кровотока. Так, в аорте и магистральных артериях вязкость крови приближается к 4-5 относительным единицам (если при­нять вязкость воды при 20 °С в качестве эталонной меры). В венозном же отделе микроциркуляции, несмотря на малое напряжение сдвига, вязкость возрастает в 6-8 раз относи­тельно своего уровня в артерии (т.е. до 30-40 относитель­ных единиц). При крайне низких, нефизиологических ско­ростях сдвига вязкость крови может возрасти в 1000 раз (!).

    Таким образом, зависимость между напряжением сдвига и скоростью сдвига для цельной крови носит нелинейный, экспоненциальный харак­тер. Подобное «реологическое поведение крови»* называют «неньютонов­ским» (рис. 23.2).

    Причина «неньютоновского поведения» крови.

    «Неньютоновское пове­дение» крови обусловлено ее грубо дисперсным характером. С физико-хи­мической точки зрения кровь может быть представлена как жидкая среда (вода), в которой взвешена твердая, нерастворимая фаза (форменные элементы крови и высокомолекулярные вещества). Частицы дисперсной фазы достаточно крупны, чтобы противостоять броуновскому движению. Поэто­му общим свойством таких систем является их неравновесность. Компо­ненты дисперсной фазы постоянно стремятся к выделению и осаждению из дисперсной среды клеточных агрегатов.

    Основной и реологически наиболее значимый вид клеточных агрегатов крови - эритроцитарный. Он представляет собой многомерный клеточный комплекс с типичной формой «монетного столбика». Характерные его черты - обратимость связи и отсутствие функциональной активизации кле­ток. Структура эритроцитарного агрегата поддерживается преимущественно глобулинами. Известно, что эритроциты больного с исходно повышенной скоростью оседания после их добавления к одногруппной плазме здорового человека начинают оседать с нормальной скоростью. И наоборот, если эритроциты здорового человека с нормальной скоростью оседания помес­тить в плазму больного, то выпадение их в осадок значительно ускорится.

    К естественным индукторам агрегации относят в первую очередь фибриноген. Длина его молекулы в 17 раз превышает ширину. Благодаря такой асимметрии фибриноген способен перекидываться в виде «мостика» с одной клеточной мембраны на другую. Образующаяся при этом связь непрочна и разрывается под действием минимального механического усилия. Подобным же образом действуют а 2 — и бета-макроглобулины, продукты деградации фибриногена, иммуноглобулины. Более тесному сближению эрит­роцитов и их необратимому связыванию между собой препятствует отри­цательный мембранный потенциал.

    Следует подчеркнуть, что агрегация эритроцитов - процесс скорее нормальный, чем патологический. Положительная его сторона заключает­ся в облегчении пассажа крови через систему микроциркуляции. При образовании агрегатов снижается отношение поверхности к объему. Как следствие, сопротивление агрегата трению оказывается значительно мень­ше, чем сопротивление отдельных его составляющих.

    Основные детерминанты вязкости крови.

    Вязкость крови подвержена влиянию многих факторов (табл. 23.1). Все они реализуют свое действие, меняя вязкость плазмы или реологические свойства форменных элементов крови.

    Эритроцит - основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови (рис. 23.3). Так, при возрастании Ht с 30 до 60 % относи­тельная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % - втрое. Гемодилюция, напротив, снижает вязкость крови.

    Термин «реологическое поведение крови» (rheological behavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.

    Деформационная способность эритроцитов.

    Диаметр эритроцита при­близительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритро­цит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря спо­собности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95-100 %.

    Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов - энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.

    Вязкость плазмы.

    Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.

    В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1 / 15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плаз­ма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком ка­пилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки фор­менных элементов крови с минимальным трением.

    Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критичес­кого характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2-3 раза. В клинической картине начинают преоб­ладать симптомы тяжелых расстройств микроциркуляции: снижение зре­ния и слуха, сонливость, адинамия, головная боль, парестезии, кровоточи­вость слизистых оболочек.

    Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возни­кают под влиянием комплекса факторов. Действие последних в критичес­кой ситуации носит универсальный характер.

    Биохимический фактор.

    В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3-5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деграда­ции фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохи­мическая ситуация - «реотоксемия».

    Гематологический фактор.

    Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повы­шенной активности.

    Гемодинамический фактор.

    Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздош­ные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.

    Гемореологические нарушения и венозные тромбозы.

    Замедление ско­рости движения в венозном отделе кровообращения провоцирует агрегацию эритроцитов. Однако инерция движения может оказаться достаточно большой и форменные элементы крови будут испытывать повышенную де­формационную нагрузку. Под ее влиянием из эритроцитов высвобождает­ся АТФ - мощный индуктор тромбоцитарной агрегации. Низкая скорость сдвига стимулирует также адгезию молодых гранулоцитов к стенке венул (феномен Farheus-Vejiens). Образуются необратимые агрегаты, которые могут составить клеточное ядро венозного тромба.

    Дальнейшее развитие ситуации будет зависеть от активности фибринолиза. Как правило, между процессами образования и рассасывания тромба возникает неустойчивое равновесие. По этой причине большинство случа­ев тромбоза глубоких вен нижних конечностей в госпитальной практике протекает скрыто и разрешается спонтанно, без последствий. Применение дезагрегантов и антикоагулянтов оказывается высокоэффективным спосо­бом профилактики венозных тромбозов.

    Методы изучения реологических свойств крови.

    «Неньютоновский» ха­рактер крови и связанный с ним фактор скорости сдвига обязательно должны учитываться при измерении вязкости в клинической лаборатор­ной практике. Капиллярная вискозиметрия основана на токе крови через градуированный сосуд под действием силы тяжести, поэтому физиологически некорректна. Реальные же условия кровотока моделируются на рота­ционном вискозиметре.

    К принципиальным элементам такого прибора относят статор и конгруентный ему ротор. Зазор между ними служит рабочей камерой и запол­няется пробой крови. Движение жидкости инициируется вращением рото­ра. Оно в свою очередь произвольно задается в виде некоей скорости сдви­га. Измеряемой величиной оказывается напряжение сдвига, возникающего как механический или электрический момент, необходимый для поддер­жания выбранной скорости. Вязкость крови затем рассчитывают по фор­муле Ньютона. Единицей измерения вязкости крови в системе СГС явля­ется Пуаз (1 Пуаз = 10 дин x с/см 2 = 0,1 Па x с = 100 отн. ед.).

    Обязательным считают измерение вязкости крови в диапазоне низких (<10 с -1) и высоких (>100 с -1) скоростей сдвига. Низкий диапазон скорос­тей сдвига воспроизводит условия кровотока в венозном отделе микроциркуляции. Определяемая вязкость носит название структурной. Она в ос­новном отражает наклонность эритроцитов к агрегации. Высокие же скорости сдвига (200-400 с -1) достигаются in vivo в аорте, магистральных со­судах и капиллярах. При этом, как показывают реоскопические наблюдения, эритроциты занимают преимущественно осевое положение. Они вы­тягиваются в направлении движения, их мембрана начинает вращаться от­носительно клеточного содержимого. За счет гидродинамических сил до­стигается почти полная дезагрегация клеток крови. Вязкость, определен­ная при высоких скоростях сдвига, зависит преимущественно от пластич­ности эритроцитов и формы клеток. Ее называют динамической.

    В качестве стандарта исследования на ротационном вискозиметре и соответствующей нормы можно использовать показатели по методике Н.П. Александровой и др. (1986)

    Для более детального представления реологических свойств крови проводят еще несколько специфических тестов. Деформационную способность эритроцитов оценивают по скорости пассажа разведенной крови через микропористую полимерную мембрану (d=2-8 мкм). Агрегационную активность красных клеток крови изучают с помощью нефелометрии по изменению оптической плотности среды после добавления в нее индукторов агрегации (АДФ, серотонина, тромбина или адреналина).

    Диагностика гемореологических нарушений .

    Расстройства в системе гемореологии, как правило, протекают латентно. Их клинические проявления неспецифичны и малозаметны. Поэтому оп­ределяют диагноз по большей части лабораторные данные. Ведущим его критерием выступает величина вязкости крови.

    Основное направление сдвигов в системе гемореологии у больных, находящихся в критическом состоянии, - переход от повышенной вязкости крови к пониженной. Этой динамике, однако, сопутству­ет парадоксальное ухудшение текучести крови.

    Синдром повышенной вязкости крови.

    Он носит неспецифический характер и широко распространен в клинике внутренних болезней: при атеросклерозе, стенокардии, хроническом обструктивном бронхите, язвенной болезни желудка, ожирении, сахарном диабете, облитерирующем эндартериите и др. При этом отмечают умеренное повышение вязкости крови до 35 сПуаз при у=0,6 с -1 и 4,5 сПуаз при у==150 с -1 . Микроциркуляторные на­рушения, как правило, маловыражены. Они прогрессируют только по мере развития основного заболевания. Синдром повышенной вязкости крови у больных, поступающих в отделение интенсивной терапии, следует рассматривать в качестве фонового состояния.

    Синдром низкой вязкости крови.

    По мере развертывания критического состояния вязкость крови вследствие гемодилюции снижается. Показатели вискозиметрии составляют 20-25 сПуаз при у=0,6 с -1 и 3-3,5 сПуаз при y=150 с -1 . Подобные величины можно прогнозировать по Ht, который обычно не превышает 30-35 %. В терминальном состоянии снижение вяз­кости крови доходит до стадии «очень низких» значений. Развивается вы­раженная гемодилюция. Ht снижается до 22-25 %, динамическая вязкость крови - до 2,5-2,8 сПуаз и структурная вязкость крови - до 15-18 с Пуаз.

    Низкая величина вязкости крови у больного в критическом состоянии создает обманчивое впечатление гемореологического благополучия. Несмотря на гемодилюцию, при синдроме низкой вязкости крови микроциркуляция существенно ухуд­шается. В 2-3 раза повышается агрегационная активность красных клеток крови, в 2-3 раза замедляется прохождение эритроцитарной суспензии через нуклеопорные фильтры. После восстановления Ht путем гемоконцентрации in vitro в таких случаях обнаруживают гипервязкость крови.

    На фоне низкой или очень низкой вязкости крови может развиться массивная агрегация эритроцитов, которая полностью блокирует микроциркуляторное русло. Это явление, описанное М.Н. Knisely в 1947 г. как «sludge»-феномен, свидетельствует о развитии терминальной и, видимо, необратимой фазы критического состояния.

    Клиническую картину синдрома низкой вязкости крови составляют тяжелые микроциркуляторные нарушения. Заметим, что их проявления неспецифичны. Они могут быть обусловлены другими, не реологическими механизмами.

    Клинические проявления синдрома низкой вяз­кости крови:

    • тканевая гипоксия (в отсутствие гипоксемии);
    • повышенное ОПСС;
    • тромбозы глубоких вен конечностей, рецидивирующая легочная тромбоэмболия;
    • адинамия,сопор;
    • депонирование крови в печени, селезенке, подкожных сосудах.

    Профилактика и лечение. Больные, поступающие в опера­ционную или отделение интенсивной терапии, нуждаются в оптимизации реологических свойств крови. Это предотвращает образование венозных тромбов, снижает вероятность ишемических и инфекционных осложне­ний, облегчает течение основного заболевания. Наиболее эффективные приемы реологической терапии - это разведение крови и подавление агрегационной активности ее форменных элементов.

    Гемодилюция.

    Эритроцит - основной носитель структурного и динамического сопротивления кровотоку. Поэтому гемодилюция оказывается наиболее действенным реологическим средством. Благотворный ее эффект известен давно. На протяжении многих веков кровопускание было едва ли не самым распространенным методом лечения болезней. Появление низ­комолекулярных декстранов стало следующим этапом в развитии метода .

    Гемодилюция увеличивает периферический кровоток, но в то же время снижает кислородную емкость крови. Под влиянием двух разнонаправленных факторов складывается, в конечном итоге, DО 2 к тканям. Она может повыситься вследствие разведения крови или, напротив, существенно со­кратиться под влиянием анемии.

    Максимально низкий Ht, которому соответствует безопасный уровень DО 2 , называют оптимальным. Точная его величина до сих пор остается предметом дискуссий. Количественные соотношения Ht и DО 2 хорошо известны. Однако не представляется возможным оценить вклад индивидуальных факторов: переносимости малокровия, напряженности тканевого метаболизма, гемодинамического резерва и др. По общему мнению цель лечебной гемодилюции - Ht 30-35 % . Однако опыт лечения массивных кровопотерь без гемотрансфузии показывает, что еще большее снижение Ht до 25 и даже 20 % с точки зрения кислородного обеспечения тканей вполне безопасно.

    В настоящее время для достижения гемодилюции используют в основном три приема.

    Гемодилюция в режиме гиперволемии

    подразумевает такое переливание жидкости, которое приводит к существенному увеличению ОЦК. В одних случаях кратковременная инфузия 1-1,5 л плазмозаменителей предваряет вводный наркоз и хирургическое вмешательство, в других случаях, требую­щих более длительной гемодилюции, снижения Ht добиваются постоян­ной нагрузкой жидкостью из расчета 50-60 мл/кг массы тела больного в сутки. Снижение вязкости цельной крови - основное следствие гиперво­лемии. Вязкость плазмы, пластичность эритроцитов и их наклонность к агрегации при этом не меняются. К недостаткам метода следует отнести риск объемной перегрузки сердца.

    Гемодилюция в режиме нормоволемии

    была предложена первоначально как альтернатива гетерологическим трансфузиям в хирургии. Суть метода заключается в дооперационном заборе 400-800 мл крови в стандартные контейнеры со стабилизирующим раствором. Контролируемую кровопотерю, как правило, восполняют одномоментно с помощью плазмозамените­лей из расчета 1:2. При некоторой модификации метода возможна заготов­ка 2-3 л аутокрови без каких-либо побочных гемодинамических и гемато­логических последствий. Собранную кровь затем возвращают во время операции или после нее.

    Нормоволемическая гемодилюция не только безопасный, но малозатратный метод аутодонорства, обладающий выраженным реологическим эф­фектом. Наряду со снижением Ht и вязкости цельной крови после эксфузии отмечается стойкое уменьшение вязкости плазмы и агрегационной способ­ности эритроцитов. Активизируется поток жидкости между интерстициальным и внутрисосудистым пространством, вместе с ним усиливаются обмен лимфоцитов и поступление иммуноглобулинов из тканей. Все это в конеч­ном итоге ведет к сокращению послеоперационных осложнений. Этот метод можно широко применять при плановых хирургических вмешательствах.

    Эндогенная гемодилюция

    развивается при фармакологической вазоплегии. Снижение Ht в этих случаях обусловлено тем, что из окружающих тканей в сосудистое русло поступает обедненная белками и менее вязкая жидкость. Подобным эффектом обладают эпидуральная блокада, галогенсодержащие анестетики, ганглиоблокаторы и нитраты. Реологический эф­фект сопутствует основному терапевтическому действию этих средств. Степень снижения вязкости крови не прогнозируется. Она определяется текущим состоянием волемии и гидратации.

    Антикоагулянты.

    Гепарин получают путем экстракции из биологичес­ких тканей (легких крупного рогатого скота). Конечный продукт представ­ляет собой смесь полисахаридных фрагментов с разной молекулярной мас­сой, но со сходной биологической активностью.

    Наиболее крупные фрагменты гепарина в комплексе с антитромбином III инактивируют тромбин, в то время как фрагменты гепарина с мол.м-7000 воздействуют преимущественно на активированный фактор X.

    Введение в раннем послеоперационном периоде высокомо­лекулярного гепарина в дозе 2500-5000 ЕД под кожу 4-6 раз в сутки стало широко распространенной практикой. По­добное назначение в 1,5-2 раза снижает риск тромбозов и тромбоэмболий. Малые дозы гепарина не удлиняют активи­рованного частичного тромбопластинового времени (АЧТВ) и, как правило, не вызывают геморрагических осложнений. Гепаринотерапия наряду с гемодилюцией (намеренной или побочной) - это основные и наиболее эффективные мето­ды профилактики гемореологических расстройств у хирур­гических больных.

    Низкомолекулярные фракции гепарина обладают меньшим сродством к тромбоцитарному фактору Виллебранда. В силу этого они по сравнению с высокомолекулярным гепарином, еще реже вызывают тромбоцитопению и кровотечение. Первый опыт применения низкомолекулярного гепарина (клексан, фраксипарин) в клинической практике дал обнадеживающие результаты. Препараты гепарина оказались эквипотенциальны традицион­ной гепаринотерапии, а по некоторым данным даже превышали ее профилактический и лечебный эффект. Помимо безопасности, низкомолекуляр­ные фракции гепарина отличаются также экономным введением (1 раз в сутки) и отсутствием необходимости в мониторинге АЧТВ. Выбор дозы, как правило, проводится без учета массы тела.

    Плазмаферез.

    Традиционное реологическое показание к плазмаферезу - синдром первичной гипервязкости, который обусловлен избыточ­ной продукцией аномальных белков (парапротеинов). Их удаление при­водит к быстрому обратному развитию болезни. Эффект, однако, непродолжительный. Процедура носит симптоматический характер.

    В настоящее время плазмаферез активно применяют для предоперационной подготовки больных с облитерирующими заболеваниями нижних конечностей, тиреотоксикозом, язвенной болезнью желудка, при гнойно-септических осложнениях в урологии. Это приводит к улучшению реоло­гических свойств крови, активизации микроциркуляции, значительному сокращению числа послеоперационных осложнений. Производят замену до 1 / 2 объема ОЦП.

    Снижение уровня глобулинов и вязкости плазмы после одной процедуры плазмафереза может быть существенным, но кратковременным. Ос­новным же благотворным эффектом процедуры, который распространяется на весь послеоперационный период, является так называемый феномен ресуспендирования. Отмывание эритроцитов в среде, свободной от белков, сопровождается стабильным улучшением пластичности эритроцитов и снижением их агрегационной наклонности.

    Фотомодификация крови и кровезаменителей.

    При 2-3 процедурах внутривенного облучения крови гелий-неоновым лазером (длина волны 623 нм) малой мощности (2,5 мВт) наблюдается отчетливый и продолжи­тельный реологический эффект. По данным прецизионной нефеломет­рии под влиянием лазеротерапии снижается число гиперергических ре­акций тромбоцитов, нормализуется кинетика их агрегации in vitro. Вяз­кость крови остается неизменной. Аналогичным эффектом обладают также УФ-лучи (с длиной волны 254-280 нм) в экстракорпоральном контуре.

    Механизм дезагрегационного действия лазерного и ультрафиолетового излучения не совсем ясен. Предполагают, что фотомодификация крови вызывает сначала образование свободных радикалов. В ответ возбуждают­ся механизмы антиоксидантной защиты, которые блокируют синтез естественных индукторов тромбоцитарной агрегации (в первую очередь простагландинов).

    Предложено также ультрафиолетовое облучение коллоидных препаратов (например, реополиглюкина). После их введения динамическая и структурная вязкость крови снижается в 1,5 раза. Существенно угнетается и тромбоцитарная агрегация. Характерно, что немодифицированный реополиглюкин не способен воспроизвести все эти эффекты.

    Гемореология - наука, изучающая поведение крови при течении (в по­токе), то есть свойства потока крови и ее компонентов, а также реологию структур клеточной мембраны форменных элементов крови, прежде всœего эритроцитов.

    Реологические свойства крови определяются вязкостью цельной крови и ее плазмы, способностью эритроцитов к агрегации и деформации их мембран.

    Кровь представляет собой негомогенную вязкую жидкость. Ее негомогенность обусловлена суспензированными в ней клетками, обладающими определœенными способностями к деформации и агрегации.

    В нормальных физиологических условиях в ламинарном кровотоке жидкость движется слоями, параллельными стенке сосуда. Вязкость крови, как и любой жидкости, определяется феноменом трения между сосœедними слоями, в результате которого слои, находящиеся возле сосудистой стенки, движутся мед­леннее, чем таковые в центре кровотока. Это приводит к формированию параболического профиля скорости, неодинакового при систоле и диастоле сердца.

    В связи с указанным, величина внутреннего трения или свойство жидкости оказывать сопротивление при перемещении слоев принято называть вязкостью . Единица измерения вязкости - пуаз.

    Из этого определœения строго следует, что чем больше вязкость, тем больше должна быть сила напряжения, необходимая для создания коэффи­циента трения или движения потока.

    В простых жидкостях, чем больше сила, приложенная к ним, тем больше скорость, то есть сила напряжения пропорциональна коэффициенту трения, а вязкость жидкости остается величиной постоянной.

    Основными факторами , которые определяют вязкость цельной крови являются:

    1) агрегация и деформируемость эритроцитов; 2) величина гематокрита - повышение показателя гематокрита͵ как правило, сопровождается увеличением вязкости крови; 3) концентрация фибриногена, растворимых комплексов фибринмономера и продуктов деградации фибри­на/фибриногена - повышение их содержания в крови увеличивает ее вяз­кость; 4) соотношение альбумин/фибриноген и соотношение альбу­мин/глобулин - снижение данных соотношений сопровождается повышением вязкости крови; 5) содержание циркулирующих иммунных комплек­сов - при повышении их уровня в крови вязкость возрастает; 6) геометрия сосудистого русла.

    При этом кровь не имеет фиксированной вязкости, поскольку является «неньютоновской» (несжимаемой) жидкостью, что определяется её негомогенностью за счет суспензирования в ней форменных элементов, которые изменяют картину течения жидкой фазы (плазмы) крови, искривляя и запу­тывая линии тока. Вместе с тем, при низких значениях коэффициента тре­ния форменные элементы крови образуют агрегаты («монетные столби­ки») и, напротив, при высоких значениях коэффициента трения - де­формируются в потоке. Интересно отметить также еще одну особенность распределœения клеточных элементов в потоке. Указанный выше градиент скорости в ламинарном потоке крови (формирующий параболический про­филь) создает градиент давления: в центральных слоях потока оно ниже, чем в периферических, что обусловливает тенденцию к перемещению клеток к центру.

    Агрегация эритроцитов - способность эритроцитов создавать в цель­ной крови «монетные столбики» и их трехмерные конгломераты. Агрегация эритроцитов зависит от условий кровотока, состояния и состава крови и плазмы и непосредственно от самих эритроцитов.

    Движущаяся кровь содержит как одиночные эритроциты, так и агрегаты. Среди агрегатов имеются отдельные цепочки эритроцитов («монетные стол­бики») и цепочки в виде выростов. С ускорением скорости потока крови раз­мер агрегатов уменьшается.

    Для агрегации эритроцитов необходим фибриноген или другой высокомолекулярный белок или полисахарид, адсорбция которых на мем­бране этих клеток приводит к образованию мостиков между эритроцитами. В «монетных столбиках» эритроциты располагаются параллельно друг другу на постоянном межклеточном расстоянии (25 нм для фибриногена). Умень­шению этого расстояния препятствует сила электростатического отталкива­ния, возникающая при взаимодействии одноименных зарядов мембраны эритроцитов. Увеличению расстояния препятствуют мостики - молекулы фибриногена. Прочность образовавшихся агрегатов прямо пропорциональна концентрации фибриногена или высокомолекулярного агреганта.

    Агрегация эритроцитов обратима: агрегаты клеток способны деформироваться и разрушаться при достижении определœенной величины сдвига. При выраженных нарушениях нередко развивается сладж - генерализован­ное нарушение микроциркуляции, вызванное патологической агрегацией эритроцитов, как правило, сочетающейся с повышением гидродинамиче­ской прочности эритроцитарных агрегатов.

    Агрегация эритроцитов, в основном, зависит от следующих факторов:

    1)ионного состава среды: при повышении общего осмотического давления плазмы эритроциты сморщиваются и утрачивают способность к агрегации;

    2)поверхностно-активных веществ, изменяющих поверхностный заряд, и их влияние может быть различным; 3) концентрации фибриногена и иммуноглобулинов; 4) контакта с инородными поверхностями, как правило, сопровождается нарушением нормальной агрегации эритроцитов.

    Суммарный объем эритроцитов примерно в 50 раз превышает объем лейкоцитов и тромбоцитов, в связи с чем реологическое поведение крови в крупных сосудах определяет их концентрация и структурно-функциональные свой­ства. К ним относятся следующие: эритроциты должны значительно деформи­роваться, чтобы не быть разрушенными при высоких скоростях кровотока в аорте и магистральных артериях, а также при преодолении капиллярного рус­ла, так как диаметр эритроцитов больше, чем капилляра. Решающее значение при этом имеют физические свойства мембраны эритроцитов, то есть ее спо­собности к деформации.

    Деформируемость эритроцитов - это способность эритроцитов деформироваться в сдвиговом потоке, при прохождения через капилляры и поры, способность к плотной упаковке.

    Основными факторами , от которых зависит деформируемость эритроцитов, являются: 1) осмотическое давление окружающей среды (плазмы крови); 2) соотношение внутриклеточного кальция и магния, концен­трация АТФ; 3) продолжительность и интенсивность приложенных к эритроциту внешних воздействий (механических и химических), меняющих липидный состав мембраны или нарушающих структуру спектриновой сети; 4) состояние цитоскелœета эритроцита͵ в состав которого входит спектрин; 5) вязкость внутриклеточного содержимого эритроцитов в зависимости от концентрации и свойств гемоглобина.

    БИОФИЗИКА СИСТЕМЫ КРОВООБРАЩЕНИЯ

    Гемодинамические показатели кровотока определяются биофизическими параметрами всей сердечно-сосудистой системы в целом, а именно собственными характеристиками сердечной деятельности (например ударным объемом крови ), структурнымиособенностями сосудов (ихрадиусом и эластичностью) и непосредственно свойствами самой крови (вязкостью).

    Для описания ряда процессов , происходящих как в отдельных частях системы кровообращения , так и в ней целом, применяются методы физического, аналогового и математического моделирования. В настоящей главе рассматриваются модели движения крови как в норме, так и при некоторых нарушениях в сердечно-сосудистой системе , к которым, в частности, можно отнести сужения сосудов (например при образовании в нихтромбов ), изменение вязкости крови.

    Реологические свойства крови

    Реология (от греч. rheos- течение, поток, logos - учение) - это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости.

    Вязкость (внутреннее трение) жидкости - свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой. Вязкость жидкости обусловлена, в первую очередь,межмолекулярным взаимодействием, ограничивающим подвижность молекул. Наличие вязкости приводит к диссипации энергии внешнего источника, вызывающего движение жидкости, и переходу ее в теплоту. Жидкость без вязкости (так называемая идеальная жидкость) является абстракцией. Всем реальным жидкостям присуща вязкость. Иcключение – явление сверхтекучести гелия при сверхнизких температурах (квантовый эффект)

    Основной закон вязкого течения был установлен И. Ньютоном

    (1687 г.) - формула Ньютона:

    где F [Н] - сила внутреннего трения (вязкости), возникающая между слоями жидкости при сдвиге их относительно друг друга; [Па с] коэффициент динамической вязкости жидкости, характеризующий сопротивление жидкости смещению ее слоев; - градиент скорости , показывающий, на сколько изменяется скорость V при изменении на единицу расстояния в налравлении Z при переходе от слоя к слою , иначе - скорость сдвига; S [м 2 ] - площадь соприкасающихся слоёв.

    Сила внутреннего трения тормозит более быстрые слои и ускоряет более медленные слои. Наряду с коэффициентом динамической вязкости рассматривают так называемый коэффициент кинематической вязкости ( плотность жидкости).

    Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.

    Ньютоновской называется жидкость , коэффициент вязкости которой зависит только от её природы и температуры . Для ньютоновских жидкостей сила вязкости прямо пропорциональна градиенту скорости. Для них непосредственно справедлива формула Ньютона (1.а), коэффициент вязкости в которой является постоянным параметром, не зависящим от условий течения жидкости.

    Неньютоновской называется жидкость , коэффициент вязкости которой зависит не только от природы вещества и температуры, но также и от условий течения жидкости , в частности от градиента скорости. Коэффициент вязкости в этом случае не является константой вещества. При этом вязкость жидкости характеризуют условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (например давление, скорость). Зависимость силы вязкости от градиента скорости становится нелинейной:

    где n характеризует механические свойства вещества при данных условиях течения. Примером неньютоновских жидкостей являются суспензии. Если имеется жидкость, в которой равномерно распределены твердые невзаимодействующие частицы, то такую среду можно рассматривать как однородную, если мы интересуемся явлениями, характеризующимися расстояниями, большими по сравнению с размером частиц. Свойства такой среды в первую очередь зависят от жидкости. Система же в целом будет обладать уже другой, большей вязкостью , зависящей от формы и концентрации частиц . Для случая малых концентраций частиц С справедлива формула:

    где К геометрический фактор - коэффициент, зависящий от геометрии частиц (их формы, размеров), для сферических частиц К вычисляется по формуле:

    (2.а)

    (R - радиус шара). Для эллипсоидов К увеличивается и определяется значениями его полуосей и их соотношениями. Если структура частиц изменится (например, при изменении условий течения), то и коэффициент К в (2), а следовательно и вязкость такой суспензии также изменится . Подобнаясуспензия представляет собой неньютоновскую жидкость. Увеличение вязкости всей системы связано с тем, что работа внешней силы при течении суспензий затрачивается не только на преодоление истинной (ньютоновской) вязкости , обусловленной межмолекулярным взаимодействием в жидкости, но и на преодоление взаимодействия между ней и структурными элементами.

    Кровь - неньютоновская жидкость . В наибольшей степени это связано с тем, что она обладает внутренней структурой , представляя собой суспензию форменных элементов в растворе - плазме. Плазма практически ньютоновская жидкость. Поскольку 93% форменных элементов составляют эритроциты , то при упрощенном рассмотрении кровь это суспензии эритроцитов в физиологическом растворе . Характерным свойством эритроцитов является тенденция к образованию агрегатов. Если нанести мазок крови на предметный столик микроскопа, то можно видеть, как эритроциты “склеиваются” друг с другом, образуя агрегаты, которые получили название монетных столбиков . Условия образования агрегатов различны в крупных и мелких сосудах. Это связано в первую очередь с соотношением размеров сосуда, агрегата и эритроцита (характерные размеры: )

    Здесь возможны три варианта:

    1. Крупные сосуды (аорта, артерии):

    D coc > d агр, d coc > d эритр

    При этом градиент небольшой, эритроциты собираются в агрегаты в виде монетных столбиков. В этом случае вязкость крови = 0,005 па.с.

    2. Мелкие сосуды (мелкие артерин, артериолы):

    В них градиент значительно увеличивается и агрегаты распадаются на отдельные эритроциты, тем самым уменьшая вязкость системы, для этих сосудовчем меньше диаметр просвета, тем меньше вязкость крови. В сосудах диаметром около 5 мкм вязкость крови составляет примерно 2/3 вязкости крови в крупных сосудах.

    3. Микрососуды (капилляры):

    Наблюдается обратный эффект: с уменьшением просвета сосуда вязкость возрастает в 10-100 раз . В живом сосуде эритроциты легко деформируются и проходят, не разрушаясь, через капилляры даже диаметром З мкм. При этом они сильно деформируются, становясь похожими на купол. В результате поверхность соприкосновения эритроцитов со стенкой капилляра увеличивается по сравнению с недеформированным эритроцитом, способствуя обменным процессам.

    Если предположить, что в случаях 1 и 2 эритроциты не деформируются, то для качественного описания изменения вязкости системы можно применить формулу (2), в которой можно учесть различие геометрического фактора для системы из агрегатов (К агр) и для системы из отдельных эритроцитов К эр: К агр К эр, обусловливающее различие вязкости крови в крупных и мелких сосудах, то для описания процессов в микрососудах формула (2) не применима, так как в этом случае не выполняются допущения об однородности среды и твердости частиц.