1. В каких случаях происходит мейоз?

Ответ. Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении. Данный тип деления клетки получил название – мейоз. Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое. Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза. В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

2. Какой набор хромосом называется диплоидным?

Ответ. Диплоидный набор хромосом - (другие названия - двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека диплоидный набор хромосом содержит 44 аутосомы и 2 половые хромосомы.

Вопросы после §30

1. В чем отличие мейоза от митоза?

Ответ. Основные отличия:

1. мейоз уменьшает вдвое число хромосом в дочерних клетках, митоз поддерживает число хромосом на стабильном уровне, как и в материнской клетке

2. в мейозе следуют 2 подряд деления, причем перед вторым-нет интерфазы

3. в профазе 1 мейоза есть конъюгация и возможен кроссинговер

4. в анафазе 1 мейоза к полюсам расходятся целые хромосомы. при митозе-хроматиды

5. в метафазе 1 мейоза вдоль экватора клетки выстраиваются биваленты хромосом, в митозе все хромосомы выстраиваются в одну линию

6. в результате мейоза образуется 4 дочерних клетки, в митозе-2 клетки.

2. Каково биологическое значение мейоза?

Ответ. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов. Таким образом, мейоз:

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

3. В какую фазу мейоза происходит кроссинговер?

Ответ. Профаза I мейоза наиболее продолжительна. В этой фазе помимо типичных для профазы митоза процессом спирализации ДНК и образования веретена деления про исходят два очень важных в биологическом отношении процесса: конъюгация (спаривание) и кроссинговер (перекрест) гомологичных хромосом.

При кроссинговере происходит обмен идентичными участками гомологичных хромосом. Подумайте, какое значение может иметь это явление.

Ответ. Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т. е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что:

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций);

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые сочетания, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки — зиготы.

Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых же лез образуются гаплоидные гаметы (1 n ). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).


Рис. 2. Схема гаметогенеза: à — сперматогенез; á — овогенез


Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Репродуктивная функция организма осуществляется в процессе соединения двух гамет при возникновении и последующем развитии из зиготы дочернего организма - оплодотворённой яйцеклетки. У половых родительских клеток есть определённый набор n-хромосом. Он называется гаплоидным. Зигота же, принимая в себя эти наборы, становится диплоидной клеткой, т.е. число хромосом там 2n: одна материнская и одна отцовская. Биологическое значение мейоза как особого деления на клетки состоит в том, что именно благодаря ему, образуется из клеток диплоидных.

Определение

Мейозом в биологии принято называть разновидность митоза; вследствие его диплоидные половых желез делятся на 1n гаметы. Когда ядро оплодотворяется, происходит слияние гамет. Таким образом, восстанавливается 2n хромосомный набор. Значение мейоза заключается в обеспечении сохранности присущего каждому виду живых организмов хромосомного набора и соответствующего количества ДНК.

Описание

Мейоз - процесс непрерывный. Его составляют 2 вида деления, последовательно следующих друг за другом: мейоз I и мейоз II. Каждый из процессов, в свою очередь, состоит из профазы, метафазы, анафазы, телофазы. Первое деление мейоза, или мейоз I, уменьшает вдвое количество хромосом, т.е. происходит явление так называемого редукционного деления. Когда наступает вторая стадия мейоза, или мейоз II, гаплоидности клеток не грозит изменение, она сохраняется. Этот процесс назван эквационным делением.

Все клетки, находящиеся в стадии мейоза, несут в себе некую информацию на генетическом уровне.

  • Профаза мейоза первого - этап постепенной спирализации хроматина и образования хромосом. В конце этого весьма сложного действия генетический материал присутствует в первоначальном виде - 2n2 хромосом.
  • Наступает метафаза - наступает и максимальный уровень спирализации. Генетический материал по-прежнему не изменяется.
  • Анафаза мейоза сопровождается редукцией. Каждая пара родительских хромосом отдаёт по одной своей дочерней клетке. Генетический материал изменяется по составу, т.к. число хромосом стало вдвое меньше: на каждый полюс клетки приходится по 1n2 хромосомы.
  • Телофаза - фаза, когда формируется ядро, разделяются цитоплазмы. Создаются дочерние клетки, их 2, и в каждой по 2 хроматиды. Т.е. набор хромосом в них гаплоидный.
  • Далее наблюдается интеркинез, небольшая передышка между первой и второй стадией мейоза. Обе дочерних клетки готовы вступить во вторую стадию мейоза, которая протекает по тому же механизму, что и митоз.

Биологическое значение мейоза заключается, следовательно, и в том, что в его второй стадии в результате сложных механизмов образуются уже 4 гаплоидных клетки - 1n1 хромосом. Т.е., одна диплоидная материнская клетка даёт жизнь четырём - у каждой гаплоидный хромосомный набор. В одной из фаз мейоза первой степени генетический материал перекомбинируется, а во второй стадии осуществляется движение хромосом и хроматид к разным полюсам клетки. Эти движения - источник изменчивости и различных внутривидовых комбинаций.

Итоги

Итак, биологическое значение мейоза, действительно, велико. Прежде всего, его следует отметить как главный, основной этап генеза гаметы. Мейозом обеспечивается передача генетической информации видов от одного организма другому, при условии, что они путём. Мейоз даёт возможность возникать внутривидовым комбинациям, т.к. дочерние клетки отличаются не только от родительских, но и различаются между собой.

Помимо этого, биологическое значение мейоза заключается и в обеспечении уменьшения количества хромосом в тот момент, когда образуются половые клетки. Мейоз обеспечивает их гаплоидность; в момент же оплодотворения в зиготе диплоидный состав хромосом восстанавливается.

Дата публикации 10.01.2013 06:12

Репродуктивная функция организма осуществляется в процессе соединения двух гамет (половые клетки) при возникновении и последующем развитии из зиготы дочернего организма – оплодотворённой яйцеклетки. У половых родительских клеток есть определённый набор n-хромосом. Он называется гаплоидным. Зигота же, принимая в себя эти наборы, становится диплоидной клеткой, т.е. число хромосом там 2n: одна материнская и одна отцовская. Биологическое значение мейоза как особого деления на клетки состоит в том, что именно благодаря ему, гаплоидная клетка образуется из клеток диплоидных.

Определение

Мейозом в биологии принято называть разновидность митоза; вследствие его диплоидные соматические клетки половых желез делятся на 1n гаметы. Когда ядро оплодотворяется, происходит слияние гамет. Таким образом, восстанавливается 2n хромосомный набор. Значение мейоза заключается в обеспечении сохранности присущего каждому виду живых организмов хромосомного набора и соответствующего количества ДНК.

Описание

Мейоз – процесс непрерывный. Его составляют 2 вида деления, последовательно следующих друг за другом: мейоз I и мейоз II. Каждый из процессов, в свою очередь, состоит из профазы, метафазы, анафазы, телофазы. Первое деление мейоза, или мейоз I, уменьшает вдвое количество хромосом, т.е. происходит явление так называемого редукционного деления. Когда наступает вторая стадия мейоза, или мейоз II, гаплоидности клеток не грозит изменение, она сохраняется. Этот процесс назван эквационным делением.

Все клетки, находящиеся в стадии мейоза, несут в себе некую информацию на генетическом уровне.

Профаза мейоза первого – этап постепенной спирализации хроматина и образования хромосом. В конце этого весьма сложного действия генетический материал присутствует в первоначальном виде – 2n2 хромосом.

Наступает метафаза – наступает и максимальный уровень спирализации. Генетический материал по-прежнему не изменяется.

Анафаза мейоза сопровождается редукцией. Каждая пара родительских хромосом отдаёт по одной своей дочерней клетке. Генетический материал изменяется по составу, т.к. число хромосом стало вдвое меньше: на каждый полюс клетки приходится по 1n2 хромосомы.

Телофаза – фаза, когда формируется ядро, разделяются цитоплазмы. Создаются дочерние клетки, их 2, и в каждой по 2 хроматиды. Т.е. набор хромосом в них гаплоидный.

Биологическое значение мейоза заключается, следовательно, и в том, что в его второй стадии в результате сложных механизмов образуются уже 4 гаплоидных клетки – 1n1 хромосом. Т.е., одна диплоидная материнская клетка даёт жизнь четырём - у каждой гаплоидный хромосомный набор. В одной из фаз мейоза первой степени генетический материал перекомбинируется, а во второй стадии осуществляется движение хромосом и хроматид к разным полюсам клетки. Эти движения – источник изменчивости и различных внутривидовых комбинаций.

Итоги

Итак, биологическое значение мейоза, действительно, велико. Прежде всего, его следует отметить как главный, основной этап генеза гаметы. Мейозом обеспечивается передача генетической информации видов от одного организма другому, при условии, что они размножаются половым путём. Мейоз даёт возможность возникать внутривидовым комбинациям, т.к. дочерние клетки отличаются не только от родительских, но и различаются между собой.

Помимо этого, биологическое значение мейоза заключается и в обеспечении уменьшения количества хромосом в тот момент, когда образуются половые клетки. Мейоз обеспечивает их гаплоидность; в момент же оплодотворения в зиготе диплоидный состав хромосом восстанавливается.

Мейоз или редукционное деление клетки - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:

Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

Пахитена или пахинема - (самая длительная стадия) кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.

Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

Телофаза I - хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.

Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Репродуктивная функция и биологическое значение мейоза

Репродуктивная функция организма осуществляется в процессе соединения двух гамет (половые клетки) при возникновении и последующем развитии из зиготы дочернего организма – оплодотворённой яйцеклетки. У половых родительских клеток есть определённый набор n-хромосом. Он называется гаплоидным. Зигота же, принимая в себя эти наборы, становится диплоидной клеткой, т.е. число хромосом там 2n: одна материнская и одна отцовская. Биологическое значение мейоза как особого деления на клетки состоит в том, что именно благодаря ему, гаплоидная клетка образуется из клеток диплоидных.

Определение

Мейозом в биологии принято называть разновидность митоза; вследствие его диплоидные соматические клетки половых желез делятся на 1n гаметы. Когда ядро оплодотворяется, происходит слияние гамет. Таким образом, восстанавливается 2n хромосомный набор. Значение мейоза заключается в обеспечении сохранности присущего каждому виду живых организмов хромосомного набора и соответствующего количества ДНК.

Описание

Мейоз – процесс непрерывный. Его составляют 2 вида деления, последовательно следующих друг за другом: мейоз I и мейоз II. Каждый из процессов, в свою очередь, состоит из профазы, метафазы, анафазы, телофазы. Первое деление мейоза, или мейоз I, уменьшает вдвое количество хромосом, т.е. происходит явление так называемого редукционного деления. Когда наступает вторая стадия мейоза, или мейоз II, гаплоидности клеток не грозит изменение, она сохраняется. Этот процесс назван эквационным делением.

Все клетки, находящиеся в стадии мейоза, несут в себе некую информацию на генетическом уровне.

  • Профаза мейоза первого – этап постепенной спирализации хроматина и образования хромосом. В конце этого весьма сложного действия генетический материал присутствует в первоначальном виде – 2n2 хромосом.
  • Наступает метафаза – наступает и максимальный уровень спирализации. Генетический материал по-прежнему не изменяется.
  • Анафаза мейоза сопровождается редукцией. Каждая пара родительских хромосом отдаёт по одной своей дочерней клетке. Генетический материал изменяется по составу, т.к. число хромосом стало вдвое меньше: на каждый полюс клетки приходится по 1n2 хромосомы.
  • Телофаза – фаза, когда формируется ядро, разделяются цитоплазмы. Создаются дочерние клетки, их 2, и в каждой по 2 хроматиды. Т.е. набор хромосом в них гаплоидный.
  • Далее наблюдается интеркинез, небольшая передышка между первой и второй стадией мейоза. Обе дочерних клетки готовы вступить во вторую стадию мейоза, которая протекает по тому же механизму, что и митоз.

Биологическое значение мейоза заключается, следовательно, и в том, что в его второй стадии в результате сложных механизмов образуются уже 4 гаплоидных клетки – 1n1 хромосом. Т.е., одна диплоидная материнская клетка даёт жизнь четырём - у каждой гаплоидный хромосомный набор. В одной из фаз мейоза первой степени генетический материал перекомбинируется, а во второй стадии осуществляется движение хромосом и хроматид к разным полюсам клетки. Эти движения – источник изменчивости и различных внутривидовых комбинаций.

Итоги

Итак, биологическое значение мейоза, действительно, велико. Прежде всего, его следует отметить как главный, основной этап генеза гаметы. Мейозом обеспечивается передача генетической информации видов от одного организма другому, при условии, что они размножаются половым путём. Мейоз даёт возможность возникать внутривидовым комбинациям, т.к. дочерние клетки отличаются не только от родительских, но и различаются между собой.

Помимо этого, биологическое значение мейоза заключается и в обеспечении уменьшения количества хромосом в тот момент, когда образуются половые клетки. Мейоз обеспечивает их гаплоидность; в момент же оплодотворения в зиготе диплоидный состав хромосом восстанавливается.

Мейоз. Биологическое значение мейоза

Мейоз - это особый тип клеточного деления, возникновение которого связано с появлением полового размножения. При половом размножении два родителя - отец и мать - дают начало новому организму. При оплодотворении сливаются ядра половых клеток родителей, что увеличивает вдвое количество хромосом в зиготе. Следовательно, образование половых клеток должно быть связано с уменьшением количества хромосом в два раза, но таким образом, чтобы совокупность генетического материала обеспечивала преемственность поколений. Закономерное чередование репликации ДНК и, соответственно, хромосом, митозов и мейозов обеспечивает сохранение видоспецифического кариоти-па как в индивидуальном развитии - онтогенезе, так и в череде поколений организмов.

В процессе мейоза из одной диплоидной клетки (2n = 46) образуются 4 гаплоидные клетки (n = 23). Кроме того, в мейозе происходит два вида перегруппировки генетического материала хромосом, т. е. два вида генетической рекомбинации: 1) независимое распределение гомологичных хромосом из разных пар к полюсам деления; 2) кроссинговер - обмен участками между гомологичными хромосомами. Эти процессы обеспечивают широчайший спектр наследственной изменчивости, генетическую неповторимость индивидов даже среди потомков одной пары родителей.

Мейотическое деление у человека не имеет каких-то коренных отличий от мейоза других эукариот. Оно состоит из двух, следующих друг за другом делений, между которыми не происходит удвоения ДНК, а следовательно, и хромосом.

Перед мейозом обязательно проходит интерфаза, в S-периоде которой ДНК реплицируется. Следовательно, в профазе первого мейотического деления выявляющиеся нитевидные хромосомы состоят из двух хроматид. Каждое из двух делений мейоза состоит из про-, мета-, ана- и телофазы с индексами I или II

Первое мейотическое деление протекает значительно дольше, чем второе. Самой длительной фазой первого мейотического деления является профаза, так как именно в этой фазе происходят такие сложные процессы, как образование бивалентов из гомологичных хромосом и кроссинговер.

Метафаза I - биваленты выстраиваются в экваториальной плоскости в цитоплазме. Центромеры хромосом расположены на экваторе, к ним прикреплены нити веретена деления. Число выстроенных бивалентов соответствует гаплоидному набору хромосом и для человека равно 23.

Анафаза I - расхождение гомологичных хромосом к противоположным полюсам клетки. Каждая хромосома состоит из двух сестринских хроматид.

Телофаза I. В этой фазе происходит образование двух дочерних ядер, каждое из которых содержит гаплоидное число хромосом, равное 23. Каждая хромосома состоит из двух сестринских хроматид.

Промежуток между двумя последующими делениями мейоза очень небольшой. Почти сразу начинается второе мейотическое деление. Оно идет по схеме митоза: 23 хромосомы, состоящие из парных сестринских хроматид, связанных в центромерных участках, в каждом из двух образованных ядер проходят профазу и мета-фазу. В анафазе они разъединяются, и сестринские хроматиды каждой хромосомы расходятся к противоположным полюсам, в результате чего образуется четыре гаплоидных ядра (рис. 10).

Рекомбинация генетического материала в мейозе происходит не только за счет процесса кроссинговера. В анафазе первого мейоти-ческого деления происходит случайное распределение по отношению к полюсам клетки гомологичных хромосом из каждого бивалента. Это приводит к большому числу возможных комбинаций отцовских и материнских хромосом в гаметах. Рассмотрим процесс подробнее на простом примере.

Проанализируем распределение первой и второй пары гомологичных хромосом в анафазе I. Известно, что в каждой паре гомологичных хромосом в процессе оплодотворения одна хромосома приходит из гаметы отца, другая - из гаметы матери. Обозначим заглавными буквами хромосомы отца, а строчными - хромосомы матери. Таким образом, А и а - первая пара хромосом, В и b - вторая пара. В профазе I образуются биваленты. В метафазе I они выстраиваются в экваториальной плоскости: А//а, В//b. В анафазе I гомологичные хромосомы из бивалентов расходятся к противоположным полюсам: к одному полюсу пойдут хромосомы А и В, т.е. отцовские, а к другому, а и b, т.е. материнские. Но у этого события может быть и другой исход, когда расположение хромосом в метафазе на экваторе будет другим: А//а, b//В. Тогда к одному полюсу пойдут хромосомы А и b, а к другому - а и В, т.е. сочетание хромосом на полюсах будет содержать одну отцовскую и одну материнскую. Наличие двух пар гомологичных хромосом обеспечивает, как мы видим, образование четырех типов гамет, качественно отличающихся друг от друга сочетанием отцовских и материнских хромосом. У человека 23 пары хромосом. Разнообразие гамет оценивается как 223. Это примерно 10 миллионов вариантов разнообразных сочетаний отцовских и материнских хромосом из каждой пары гомологов. При оплодотворении практически равновероятна встреча любого из сперматозоидов с овулировавшей яйцеклеткой. Это увеличивает число возможных генотипов детей (223 223). Частота генетической рекомбинации в результате независимого распределения разных пар гомологов выше, чем частота рекомбинации в результате кроссинговера.

Наследование признаков, сцепленных с полом. Хромосомы X и Y гомологичны, так как у них есть общие гомологичные участки, где локализованы аллельные гены. Однако эти хромосомы, несмотря на гомологию отдельных локусов, различаются по морфологии. Помимо общих участков Х- и Y-хромосомы имеют большой набор генов, по которым они различаются. В Х-хромосоме имеются гены, которые отсутствуют в Y-хромосоме, в свою очередь, в Y-хромосо-ме имеются гены, которых нет в Х-хромосоме. Таким образом, у мужчин в половых хромосомах имеются гены, которые не имеют второго аллеля в гомологичной хромосоме. В этом случае признак определяется не парой аллельных генов, как обычно менделирую-щий признак, а только одним аллелем. Такое состояние гена называется гемизиготным (рис. 15). Признаки, развитие которых обусловлено одним аллелем, расположенным в одной из альтернативных половых хромосом, называются сцепленными с полом. Они развиваются преимущественно у одного из двух полов. Эти признаки наследуются по-разному у лиц мужского и женского пола.

Признаки, сцепленные с Х-хромосомой, могут быть и рецессивными, и доминантными. Рецессивные признаки - гемофилия, дальтонизм, атрофия зрительного нерва и миопатия Дюшена. Доминантные - рахит, не поддающийся лечению витамином D, и темная эмаль зубов.

Рассмотрим сцепленное с Х-хромосомой наследование на примере рецессивного гена гемофилии. У мужчины половые хромосомы XY. Ген гемофилии локализован в Х-хромосоме и не имеет аллеля в Y-хромосоме, т. е. находится в гемизиготном состоянии. Следовательно, несмотря на то, что признак рецессивный, у мужчин он проявляется:

N - ген нормальной свертываемости крови;

h - ген гемофилии;

XhY - мужчина с гемофилией;

XNY - мужчина здоров.

У женщин половые хромосомы XX. Признак определяется парой аллельных генов, поэтому гемофилия проявляется только в гомозиготном состоянии:

XNXN - женщина здорова;

XNXh - гетерозиготная женщина (носительница гена гемофилии), здорова;

XhXh - женщина-гемофилик.

Основные формальные характеристики Х-сцепленного рецессивного наследования следующие. Обычно поражаются мужчины. Все их фенотипически здоровые дочери являются гетерозиготными носительницами, так как от отца в процессе оплодотворения получают Х-хромосому:

Биологическое значение мейоза заключается в том, что____________

Elizaveta slotina

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Биологическое значение мейоза заключается в

а)оброзование мужских и женских гамет
б)оброзованни соматических клеток
в)увеличении чмсла клеток в организме

а. Биологическое значение мейоза заключается в уменьшении числа хромосом вдвое и образовании гаплоидных гамет. Слияние гаплоидных клеток при оплодотворении восстанавливает в зиготе диплоидный набор хромосом. Перекомбинация генов, осуществляемая в мейозе, приводит к внутривидовой изменчивости.
Мейоз - особый вид деления клеток, в результате которого образуются гаметы - половые клетки с гаплоидным набором хромосом. Мейоз представляет собой два последовательных деления в процессе гаметогенеза. Оба деления мейоза включают те же фазы, что и митоз:
профазу,
метафазу,
анафазу,
телофазу.

Биологическое значение мейоза?

Биологический смысл мейоза заключается не только в том, что происходит сохранение генетического материала в следующем поколении, так как при оплодотворении сливаются гаплоидные гаметы и восстанавливается диплоидный набор хромосом. Но еще и в том, что гены могут комбинироваться и образовывать новые их комбинации в результате кроссинговера - обмена участками между гомологичными хромосомами, который осуществляется при их конъюгации в профазе первого деления.

Кроме того,случайное расхождение негомологичных хромосом обеспечивает независимое наследование, а следствие ОБРАЗОВАНИЕ НОВЫХ КОМБИНАЦИЙ ГЕНОВ И ХРОМОСОМ. Это играет очень важную роль в существовании и эволюции вида.

Juliette

Мейоз - редукционное деление клетки, происходит при образовании половых клеток, у которых должен быть гаплоидный (одинарный) набор хромосом. Тогда при оплодотворении образуется зигота с двойным набором хромосом, половина которых - от отца, половина - от матери.

Дольфаника

Процесс мейоза уменьшает хромосомы, в противном случае последующее поколение, когда происходит слияние ядер яйцеклетки и сперматозоида хромосомы размножались бы без конца.

Биологическое значение мейоза - возникновение наследственной изменчивости.

Значение мейоза лучше представлять по таблицам. Мейоз происходит у организмов, размножающихся половым путем.