Проводящие пути Столбы спинного мозга Физиологическое значение
А. Восходящие (чувствительные) пути
1. Тонкий пучок (пучок Голля) Дорсальные Тактильная чувствительность, чувства положения тела, пассивных движений тела,
2.Клиновидный (пучок Бурдаха) « Тоже
3. Дорсолатеральный Боковые Пути болевой и температурной чувствительности
4. Дорсальный спинно-мозжечковый путь (пучок Флексига) « Импульсы от проприоцепторов мышц, сухожилий, связок; чувство давления и прикосновения из кожи
5. Вентральный спинно-мозжечковый путь (пучок Говерса) « Тоже
таламический путь « Болевая и температурная чувствительность
7. Спинно-тектальный путь таламический путь « Сенсорные пути зрительно-двигательных рефлексов (?) и болевой чувствительности (?)
Вентральные Тактильная чувствительность
1. Латеральный корково-спинномозговой (пирамидный) путь Боковые Импульсы к скелетным мышцам. Произвольные движения
2. Красноядерно-спинномозговой (Монакова) путь « Импульсы, поддерживающие тонус скелетных мышц
спинномозговой путь « позы и равновесия тела
4. Оливоспинномозговой (Гельвёга) путь " « Функция неизвестна. Возможно, он участвует в осуществлении таламоспинальных рефлексов
5. Ретикулярно-спинномозговой путь Вентральные Импульсы, поддерживающие тонус скелетных мышц, регулирующие состояние спинальных вегетативных центров и чувствительность мышечных веретен проприорецепторов скелетных мышц
6. Вентральный преддверно-спинномозговой путь « Импульсы, обеспечивающие поддержание позы и равновесия тела
7. Тектоспинальный (покрышечно-спинномозговой) путь « Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов
8. Вентральный корково-спинномозговой (пирамидный) путь Вентральные Импульсы к скелетным мышцам, произвольные движения

нервных волокон, характеризующиеся общностью строения и функций. Они связывают различные отделы спинного мозга или спинной и головной мозг. Все нервные волокна одного пути начинаются от однородных нейронов и заканчиваются на нейронах, выполняющих одинаковую функцию.

В соответствии с функциональными особенностями различают ассоциативные, комиссуральные и проекционные (афферентные и эфферентные) нервные волокна. Ассоциативные волокна, или пучки осуществляют односторонние связи между отдельными частями спинного мозга. Связывая разные сегменты, они образуют собственные пучки, являющиеся частью сегментарного аппарата спинного мозга. Комиссуральные волокна соединяют функционально однородные противоположные участки разных отделов спинного мозга. Проекционные волокна связывают спинной мозг с вышележащими отделами. Эти волокна образуют основные проводящие пути, которые представлены восходящими (центростремительными, афферентными, чувствительными) и нисходящими (центробежными, эфферентными, двигательными) путями.


Восходящие проводящие пути. Несут импульсы от рецепторов, воспринимающих информацию из внешнего мира и внутренней среды организма. В зависимости от вида чувствительности, которую они проводят, их делят на пути экстеро-, проприо- и интероцептивной чувствительности. Нисходящие пути передают импульсы от структур головного мозга к двигательным ядрам, осуществляющим ответные реакции на внешние и внутренние раздражения.

Основными восходящими путями спинного мозга являются тонкий пучок, клиновидный пучок, латеральный и вентральный спинно-таламические пути, дорсальный и вентральный спинно-мозжечковые пути.

Тонкий пучок (Голля) и клиновидный пучок (Бурдаха) составляют задние канатики спинного мозга. Эти пучки волокон являются отростками чувствительных клеток спинальных ганглиев, проводящих возбуждение от проприорецепторов мышц, сухожилий, частично тактильных рецепторов кожи, висцерорецепторов. Волокна тонкого и клиновидного пучков - миелинизированные, они проводят возбуждение со скоростью 60-100 м/с. Короткие аксоны обоих пучков устанавливают синаптические связи с мотонейронами и интернейронами своего сегмента, длинные же направляются в продолговатый мозг. По пути они отдают большое число ветвей к нейронам вышележащих сегментов спинного мозга, образуя, таким образом, межсегментарные связи.

По волокнам тонкого пучка проводится возбуждение от каудальной части тела и тазовых конечностей, по волокнам клиновидного пучка - от краниальной части тела и грудных конечностей. В спинном мозгу оба этих пути идут, не прерываясь и не перекрещиваясь, и оканчиваются в продолговатом мозгу у одноименных ядер, где образуют синаптическое переключение на второй нейрон. Отростки второго нейрона направляются к специфическим ядрам таламуса противоположной стороны, образуя тем самым своеобразный перекрест. Здесь они переключаются уже на третий нейрон, аксоны которого достигают нейронов IV слоя коры больших полушарий.

Считают, что по этой системе проводится информация тонко дифференцированной чувствительности, позволяющая определить локализацию, контур периферического раздражения, а также его изменения во времени.

По латеральному спинно-таламическому пути проводится болевая и температурная чувствительность, по вентральному спинно-таламическому - тактильная. Существуют сведения, что по этим путям возможна также передача возбуждения от проприо- и висцероцепторов. Скорость проведения возбуждения в волокнах составляет 1-30 м/с. Спинно-таламические пути прерываются и перекрещиваются либо на уровне сегмента, в который они только что вступили, либо вначале проходят несколько сегментов по своей стороне, а затем переходят на противоположную. Отсюда идут волокна, оканчивающиеся в таламусе. Там они образуют синапсы на нервных клетках, аксоны которых направляются в кору больших полушарий.

Полагают, что по системе волокон этих путей в основном передается информация о качественной природе раздражителей.

Дорсальный спинно-мозжечковый путь, или пучок Флексига - филогенетически это наиболее древний чувствительный путь спинного мозга. Местом расположения нервных клеток, аксоны которых образуют волокна этого пути, является основание дорсального рога спинного мозга. Не перекрещиваясь, путь достигает мозжечка, где каждое волокно занимает определенную область. Скорость проведения по волокнам спинно-мозжечкового пути около 110 м/с. По ним проводится информация от рецепторов мышц и связок конечностей. Наибольшего развития этот путь достигает у копытных животных.

Вентральный спинно-мозжечковый путь, или пучок Говерса, также образуется аксонами интернейронов противоположной стороны спинного мозга. Через продолговатый мозг и ножки мозжечка волокна направляются к коре мозжечка, где занимают обширные площади. Импульсы со скоростью проведения до 120 м/с идут от сухожильных, кожных и висцерорецепторов. Они участвуют в поддержании тонуса мышц для выполнения движений и сохранения позы.

Нисходящие проводящие пути. Эти пути связывают высшие отделы ЦНС с эффекторными нейронами спинного мозга. Основными из них являются пирамидный, красноядерно-спинномозговой и ретикулярно-спинномозговой пути.

Пирамидный путь образован аксонами клеток двигательной зоны коры больших полушарий. Направляясь к продолговатому мозгу, эти аксоны отдают большое число коллатералей структурам промежуточного, среднего, продолговатого мозга и ретикулярной формации. В нижней части продолговатого мозга большая часть волокон пирамидного пути переходит на противоположную сторону (перекрест пирамид), образуя латеральный пирамидный путь. В спинном

мозгу он располагается в боковом канатике. Другая часть волокон идет, не перекрещиваясь, до спинного мозга и только на уровне сегмента, в котором оканчивается, переходит на противоположную сторону. Это прямой вентральный пирамидный путь. Оба заканчиваются на мотонейронах передних рогов серого вещества спинного мозга. Состав волокон этого пути неоднороден, в нем представлены миелинизированные и немиелинизированные волокна разного диаметра со скоростями проведения возбуждения от 1 до 100 м/с.

Основной функцией пирамидных путей является передача импульсов для выполнения произвольных движений. Надежность в осуществлении этой функции повышается благодаря дублированию связи головного мозга со спинным посредством двух путей - перекрещенного и прямого. В эволюционном ряду пирамидный тракт развивался параллельно с развитием коры больших полушарий и достиг наибольшего совершенства у человека.

Красноядерно-спинномозговой путь (Монакова) образован аксонами клеток красного ядра среднего мозга. Выйдя из ядра, волокна полностью переходят на противоположную сторону. Часть из них направляется в мозжечок и ретикулярную формацию, другие - в спинной мозг. В спинном мозгу волокна располагаются в боковых столбах перед перекрещенным пирамидным путем и оканчиваются на интернейронах соответствующих сегментов. Красноядерно-спинномозговой путь несет импульсы от мозжечка, ядра вестибулярного нерва, полосатого тела.

Основное назначение красноядерно-спинномозгового пути - управление тонусом мышц и непроизвольной координацией движений. В процессе эволюции этот путь возник рано. Большое значение он имеет у животных, слабее развит у человека.

Преддверно-спинномозговой путь образован волокнами, которые являются отростками клеток латерального пред дверного ядра (ядра Дейтерса), лежащего в продолговатом мозгу. Этот тракт имеет наиболее древнее эволюционное происхождение. По нему передаются импульсы от вестибулярного аппарата и мозжечка к мотонейронам вентральных рогов спинного мозга, регулирующие тонус мускулатуры, согласованность движений, равновесие. При нарушении целостности этого пути наблюдаются расстройства координации движений и ориентации в пространстве.

В спинном мозгу помимо основных длинных имеются и короткие нисходящие пути, соединяющие между собой его отдельные сегменты.

№ п/п Название пути Характеристика пути
Нисходящие Восходящие
Передние канатики
Передний корково-спинномозговой путь, tractus corticospinalis ventralis (anterior) Эфферентный (пирамидный)
Покрышечно-спинномозговой путь, tractus tectospinalis
Преддверно-спинномозговой путь, tractus vestibulospinalis Эфферентный (экстрапирамидный)
Ретикулярно-спинномозговой путь, tractus reticulospinalis Эфферентный (экстрапирамидный)
Задний продольный пучок, fasciculus longitudinalis dorsalis (posterior) Входит в структуру эфферентных путей
Передний спинно-таламический путь, tractus spinоthalamicus ventralis (anterior) Афферентный
Задние канатики
Тонкий пучок, fasciculus gracilis (пучок Голля) Афферентный
Клиновидный пучок, fasciculus cuneatus (пучок Бурдаха) Афферентный
Боковые канатики
Боковой спинно-таламический путь, tractus spinothalamicus lateralis Афферентный
Передний спинно-мозжечковый путь, tractus spinocerebеllaris ventralis (anterior), пучок Говерса Афферентный
Задний спинно-мозжечковый путь, tractus spinocerebellaris ventralis (posterior), пучок Флексига Афферентный
Латеральный корково-спинномозговой путь, tractus corticospinalis lateralis Эфферентный (пирамидный)
Красноядерно-спинномозговой путь, tractus rubrospinalis Эфферентный (экстрапирамидный)

Рис. 6. Проводящие пути спинного мозга: 1 – тонкий пучок (пучок Голля); 2 – клиновидный пучок (пучок Бурдаха); 3 – задний спинно-мозжечковый путь (пучок Флексига); 4 – латеральный корково-спинномозговой путь; 5 – красноядерно-спинномозговой путь; 6 – боковой спинно-таламический путь; 7 – задний предверно-спинномозговой путь; 8 – передний спинно-мозжечковый путь (пучок Говерса); 9 – ретикулярно-спинномозговой путь; 10 – преддверно-спинномозговой путь; 11 – передний спинно-таламический путь; 12 – передний корково-спинномозговой путь; 13 – покрышечно-спинномозговой путь; 14 – задний продольный пучок.


В белом веществе СМ на уровне шейных сегментов между передними и задними столбами, а на уровне верхнегрудных сегментов между боковыми и задними столбами располагается ретикулярная формация, formatiо reticularis, состоящая из редко расположенных нейронов с большим числом анастомозирующих отростков.

К структурам СМ относятся корешки (передние и задние). В каждом сегменте имеется по одной паре передних и задних корешков (рис. 1). Передний корешок, radix anterior, представляет совокупность аксонов двигательных нейронов, тела которых расположены в передних столбах СМ. На уровне сегментов С 8 – L 1–2 и S 2–4 в состав передних корешков входят также аксоны вегетативных нейронов, тела которых локализуются в боковых столбах.

Каждый задний корешок, radix posterior, представлен совокупностью аксонов (центральных отростков) псевдоуниполярных клеток, тела которых находятся в спинномозговых ганглиях, ganglia spinales. Ганглии располагаются у места соединения заднего корешка с передним. В пределах межпозвоночного отверстия нервные волокна передних корешков СМ начинают располагаться вместе с периферическими отростками псевдоуниполярных клеток спинномозговых узлов. Совокупность этих двух видов волокон образует спинномозговой нерв, nervus spinalis. Число пар спинномозговых нервов соответствует числу сегментов СМ, т. е. их 31 пара – 8 пар шейных спинномозговых нервов, 12 – грудных, 5 – поясничных, 5 – крестцовых и 1-3 –копчиковых. Их протяжённость равна длине межпозвоночных отверстий, в которых они пролегают.

Корешки поясничных, крестцовых и копчиковых сегментов, прежде чем достичь межпозвоночных отверстий, проходят некоторое расстояние в пределах позвоночного, а затем крестцового каналов. Совокупность этих корешков формирует конский хвост, cauda equina, внутри которого располагаются мозговой конус, conus medullaris, и терминальная нить, filum terminale.

Оболочки спинного мозга. СМ покрыт тремя оболочками, meninges, (рис. 7). Наружная – твёрдая мозговая оболочка, dura mater spinalis, под ней располагается паутинная оболочка, arachnoidea spinalis, и внутренняя – мягкая (сосудистая) оболочка, pia mater spinalis.

Твёрдая мозговая оболочка с внутренней поверхности покрыта эндотелием и соединена многочисленными перемычками с паутинной оболочкой. Между этими оболочками располагается субдуральная щелевидная полость, cavum subdurale, заполненная спинномозговой жидкостью и соединительнотканными волокнами.

Между твердой мозговой оболочкой и надкостницей позвонков находится эпидуральное пространство, cavum epidurale. В нём размещается жировая клетчатка и внутреннее позвоночное венозное сплетение.

Рис. 7. Оболочки спинного мозга: 1 – dura mater spinalis; 2 – cavitas epiduralis; 3 – arachnoidea mater spinalis; 4 – cavitas subarachnoidalis; 5 – pia mater spinalis; 6 – ganglion spinale; 7 – ligamentum denticulatum


Паутинная оболочка покрыта эндотелием с обеих сторон. Многочисленными перемычками она соединяется с сосудистой и твёрдой мозговыми оболочками. От паутинной оболочки во фронтальной плоскости отходят зубчатые связки, ligamenta denticulatа. В области межпозвоночных отверстий эти связки срастаются с обеими оболочками. В пределах конского хвоста перемычки и зубчатые связки отсутствуют.

Сосудистая оболочка прилегает непосредственно к СМ, заходит в переднюю срединную щель и во все его борозды. Снаружи она покрыта эндотелием. Между сосудистой и паутинной оболочками находится подпаутинное пространство, cavitas subarachnoidalis, которое несколько расширено вокруг конского хвоста, что получило название концевой цистерны, cisterna terminalis. Подпаутинное пространство содержит 120–140 мл спинномозговой жидкости.

Оболочки СМ и межоболочечные пространства со спинномозговой жидкостью обеспечивают механическую защиту органа, а сосудистая оболочка выполняет также трофическую функцию в отношении СМ.

Функции спинного мозга заключаются в проведении нервных импульсов и обеспечении безусловно-рефлекторной деятельности мускулатуры туловища и конечностей.

ГОЛОВНОЙ МОЗГ

CEREBRUM, греч. ENCEPHALON

Головной мозг (ГМ) с окружающими его оболочками находится в полости мозгового отдела черепа. Масса ГМ варьирует у взрослого человека от 1100 до 2000 г, в среднем 1320 г: у мужчин – 1394 г, у женщин – 1245 г. После 60 лет масса ГМ несколько уменьшается. В структуре ГМ (рис. 8) различают: конечный мозг, telencephalon; промежуточный – diencephalon; средний – mesencephalon; задний – metencephalon; продолговатый – medulla oblongata, греч. myelencephalon.

Продолговатый мозг

Мyelencephalon

Продолговатый мозг располагается между спинным и задним мозгом. Его длина в среднем равна 25 мм. Границу со СМ проводят по линии выхода 1-й пары спинномозговых нервов или по нижнему краю большого затылочного отверстия. Граница с задним мозгом проходит с вентральной поверхности по нижнему краю моста (рис. 9 а), а на дорзальной – по мозговым полоскам, stria medullaris IV желудочка (рис. 9 б). По форме продолговатый мозг напоминает усечённый конус или луковицу, что в прошлом послужило основанием назвать его луковицей мозга, bulbus cerebri (BNA), поэтому клинические симптомы, связанные с поражением ядерных структур продолговатого мозга, получили название бульбарных расстройств.


Рис. 9. Продолговатый мозг: а –вентральная, б –дорзальная поверхности; 1 – oliva; 2 – pyramis; 3 – sulcus anterolateralis; 4 – fissura mediana anterior; 5 – decussatio pyramidum; 6 – funiculus lateralis; 7 – tuberculum gracile; 8 – tuberculum cuneatum; 9 – fasciculus cuneatus; 10 – fasciculus gracilis; 11 – sulcus medianus posterior; 12 – pons; 13 – sulcus posterolateralis; 14 – pedunculus cerebellaris inferior; 15 – stria medullaris

Рис. 10. Задний мозг: 1 – pons; 2 – cerebellum; 3 – medulla oblongata; 4 – sulcus basillaris; 5 – pedunculus cerebellaris medius; 6 – pedunculus cerebri


В продолговатом мозге различают переднюю, заднюю и две боковые поверхности, а также переднюю срединную щель, fissura mediana ventralis (anterior) и пять борозд: непарная – задняя срединная борозда, sulcus medianus dorsalis (posterior), и парные – передние и задние боковые борозды, sulci ventrolaterales (anterolaterales), sulci dorsolaterales (posterolaterales), которые являются продолжением борозд СМ.

На передней поверхности продолговатого мозга между передней срединной щелью и передними боковыми бороздами располагаются пирамиды, pyramis, большинство волокон которых в нижнем отделе ПМ переходят на противоположную сторону и входят в состав боковых канатиков СМ. Неперекрещенные волокна вступают в передние канатики СМ. Указанный перекрест волокон получил название перекрест пирамид, decussatio pyramidum. В пирамидах проходят двигательные (пирамидные) пути.

Латеральнее пирамид располагается по оливе, oliva, внутри которых локализуются ядра оливы, nuclei olivarii. Эти ядра имеют множественные связи с мозжечком и СМ, что обусловливает их участие в поддержании равновесия. Между пирамидой и оливой из переднелатеральной борозды выходят корешки XII пары черепных нервов, nervi hypoglossi.

На задней поверхности продолговатого мозга между задней срединной и задними боковыми бороздами находятся задние канатики, идущие из СМ. Каждый канатик посредством промежуточной борозды, sulcus intermedius, делится на два пучка – тонкий, лежащий медиально, и клиновидный, расположенный латерально. Сверху пучки заканчиваются с обеих сторон одноименными бугорками – бугорки тонкого и клиновидного ядер, tubercula nucleorum gracile et cuneatum. Дорзальнее оливы из заднелатеральной борозды выходят черепные нервы: языкоглоточный, блуждающий и добавочный (IX, X и XI пары). Часть волокон, отходящих от нейронов тонкого и клиновидного ядер, образуют нижние мозжечковые ножки, соединяющие мозжечок с продолговатым мозгом. Эти ножки снизу и латерально ограничивают нижний треугольник ромбовидной ямки, в пределах которой находятся ядра IX–XII пар черепных нервов. Другая часть волокон формирует медиальную петлю, lemniscus medialis. Волокна правой и левой медиальных петель переходят на противоположную сторону, образуя перекрест медиальных петель, decussatio lemniscorum medialium. Над данным перекрестом располагается задний продольный пучок, fasciculus longitudinalis dorsalis (posterior).

Волокна тонкого и клиновидного путей, а также медиальной петли являются структурами анализатора проприоцептивной чувствительности. К путям проприоцептивной чувствительности относятся и пути в нижних ножках мозжечка.

В пределах продолговатого мозга располагается часть ретикулярной формации, в которой локализуются жизненно важные центры: сердечно-сосудистый (кровообращения) и дыхания.

Функции продолговатого мозга . Благодаря расположению в продолговатом мозге ядер IX–XII пар черепных нервов и ретикулярной формации, он обеспечивает реализацию следующих видов безусловных жизненно важных рефлексов:

1) защитных, связанных с кашлем, миганием, чиханием, рвотой, слезотечением;

2) пищевых, связанных с сосанием, глотанием, сокоотделением в пищеварительном тракте;

3) сердечно– сосудистых и дыхательных, обеспечивающих регуляцию работы сердца, сосудов и дыхательной мускулатуры;

4) установочных,связанных с перераспределением тонуса поперечно-полосатой мускулатуры;

5) эмоциональных, обеспечивающих отражение через мимику психического состояния человека.

Задний мозг

Metencephalon

Задний мозг каудально граничит с продолговатым, а краниально – со средним. Граница со средним мозгом проходит на вентральной поверхности по переднему краю моста, а на дорзальной – по нижним холмикам и их ручкам, о границе с продолговатым мозгом см. выше. Задний мозг включает мост и мозжечок (рис. 10). Продолговатый и задний мозг образуются из ромбовидного мозга, полостью которого является IV желудочек, ventriculus quartus.

Мост, pons (варолиев мост). Он прилегает к скату затылочной кости. На вентральной поверхности моста посередине располагается основная борозда, sulcus basillaris, в которой находится одноимённая артерия. На фронтальном разрезе моста (рис. 11) показано его внутреннее строение.

В центральной части находится мощный пучок поперечно расположенных волокон – трапециевидное тело, corpus trapezoideum. Между его волокнами находятся парные вентральные и дорзальные ядра, nuclei trapezoidei ventrales et dorsales. Волокна и ядра трапециевидного тела относятся к проводящим путям слухового анализатора.

Трапециевидное тело делит мост на вентральную (базилярную) часть, pars ventralis (basillaris) pontis, и дорзальную часть (покрышку) моста, pars dorsalis (tegmentum) pontis. В покрышке моста над трапециевидным телом справа и слева располагаются волокна медиальных петель, lemniscus medialis а латерально и выше их – латеральных петель, lemniscus lateralis. Ближе к середине над трапециевидным телом располагаются структуры ретикулярной формации, а ещё выше – задний продольный пучок, fasciculus longitudinalis dorsalis.



Рис. 11. Поперечный разрез моста: 1 – vellum medullare superius; 2 – pedunculus cerebellaris superior; 3 – corpus trapezoideum; 4 – sulcus basillaris; 5 – fasciculus longitudinalis dorsalis; 6 – lemniscus medialis; 7 – lemniscus lateralis; 8 – fibrae pontis longitudinales; 9 – n. trigeminus; 10 – n. abducens; 11 – n. facialis; 12 – ventriculus quartus


Рис. 12. Мозжечок, а – вид сверху: 1 – hemispheria cerebelli; 2 – vermis; 3 – fissura cerebelli; 4 – fissura horizontalis; 5 – folia cerebelli; б – горизонтальный разрез мозжечка: 1 – nucleus dentatus; 2 – nucleus emboliformis; 3 – nucleus globusus; 4 – nucleus fastigii; 5 – cortex cerebellaris; 6 – arbor vitae cerebelli; 7 – vermis


Кроме указанных структур в покрышке моста в границах верхнего треугольника ромбовидной ямки локализуются ядра 4 пар черепных нервов – V, VI, VII и VIII (nn. trigeminus, abducens, facialis et vestibulocochlearis). В базилярной части моста располагаются собственные ядра моста, nuclei pontis. Отростки нейронов этих ядер образуют пучки поперечных волокон моста, fibrae pontis transversae, которые входят в мозжечок, формируя его средние ножки. Границей между этими ножками и мостом является место прохождения корешка, n. trigeminus. В базилярной части моста проходят эфферентные пирамидные и экстрапирамидные пути.

Мозжечок (малый мозг), cerebellum , располагается над продолговатым мозгом и мостом, занимая полость задней черепной ямки. Сверху он граничит с затылочными долями полушарий большого мозга, от которого отделяется поперечной щелью большого мозга, fissura transversa cerebri.

В мозжечке различают верхнюю и нижнюю поверхности, разделенные горизонтальной щелью, fissura horizontalis. На нижней поверхности имеется углубление – долинка мозжечка, vallecula cerebelli, к которой прилегает продолговатый мозг.

Мозжечок состоит из 2 полушарий, hemispheria cerebelli, соединённых непарным образованием – червём, vermis cerebelli (рис. 12 а). Поверхность полушарий мозжечка и червя изрезана множеством поперечных щелей, между которыми находятся листки (извилины) мозжечка, folia cerebelli. Более глубокие борозды полушарий и червя отделяют друг от друга их дольки. Наиболее старой долькой полушарий, прилегающей к вентральной поверхности средних ножек мозжечка, является клочок, flocculus, который посредством своих ножек, pedunculi flocculi, соединяется с долькой червя, которая называется узелком, nodulus. Между узелком и ножками клочка располагаются дольки полушарий – миндалина мозжечка, tonsila cerebelli.

В полушариях и в черве мозжечка снаружи размещается серое вещество – cortex cerebelli, а под ним – белое вещество, в котором локализуются парные ядра мозжечка (рис. 12 б). В центре полушарий находится самое крупное зубчатое ядро, nucleus dentatus. На горизонтальном срезе полушарий оно имеет вид тонкой извилистой полоски, которая в медиальном направлении не замкнута. Это место называется воротами зубчатого ядра, hilum nuclei dentati, через которые входят волокна верхних мозжечковых ножек. В медиальном направлении от зубчатого ядра располагаются пробковидное и шаровидное ядра, nuclei emboliformis et globusus, а самое медиальное в черве над четвёртым желудочком – ядро шатра, nucleus fastigii.

На разрезах мозжечка и особенно на сагиттальном срединном разрезе червя его серое и белое вещество создают вид листка туи, вечнозелёного «живого» дерева, что побудило анатомов древности дать рисунку мифическое название – древо жизни, arbor vitae.


Мозжечок соединяется с другими отделами головного мозга посредством трёх пар ножек – верхних, нижних и средних (рис. 13). Верхние мозжечковые ножки, pedunculi cerebellaris superiores, соединяют мозжечок со средним мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris anterior и волокна, связанные с экстрапирамидным путём, tractus rubrospinalis.

Нижние мозжечковые ножки, pedunculi cerebellares inferiores, соединяют мозжечок с продолговатым мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris posterior, и волокна, связанные с экстрапирамидным путём, tractus vestibulospinalis, а также fibrae arcuatae externi (tr. bulbothalamicus, неперекрещенная часть).

Средние ножки мозжечка, pedunculi cerebellares medii – самые мощные ножки. Их волокна, под названием «мостомозжечковые пути», соединяют ядра моста с корой мозжечка и входят в состав корково-мостовых путей.

С позиции филогенеза в мозжечке морфологически и функционально выделяют три части.

1. Древняя, archicerebellum, – это клочок и ядро шатра. Они обеспечивают пространственную ориентацию тела и его частей, а также равновесие тела.

2. Старая, paleocerebellum, – червь, пробковидное и шаровидное ядра. Они обеспечивают регуляцию тонуса мышц и координацию движений туловища.

3. Новая, neocerebellum, – зубчатое ядро и полушария в целом. Данная часть мозжечка обеспечивает координацию произвольных движений конечностей.

Функции заднего мозга. Благодаря расположению в заднем мозге ядер V – VIII пар черепных нервов, ретикулярной формации и ядер мозжечка, он выполняет следующие функции.

1. Регуляция мышечного тонуса и обеспечение координации движений частей тела человека, делающей их плавными, точными, соразмерными.

2. Согласование быстрых (фазных) и медленных (тонических) компонентов двигательных актов, обеспечивающее равновесие тела и сохранение позы.

3. Поддержание стабильности ряда вегетативных функций, связанных с константами крови, работой пищеварительной системы, регуляцией сосудистого тонуса и обменных процессов.



Рис.13. Мозжечок, вид сбоку: 1 – pedunculus cerebri; 2 – lemniscus medialis; 3 – lemniscus lateralis; 4 – pons; 5 – pedunculus cerebellaris superior; 6 – pedunculus cerebellaris inferior



Рис. 14. Ромбовидная ямка. 1 – obex; 2 – recessus lateralis; 3 – sulcus medianus; 4 – eminentia medialis; 5 – sulcus limitans; 6 – colluculus facialis; 7 – trigonum nervi hypoglossi; 8 – trigonum nervi vagi; 9 – stria medullaris; 10 – area vestibularis; 11, 12, 13 – pedunculi cerebellares superior, medius et inferior


Похожая информация.


Основные проводящие пути спинного мозга

Не ставя перед собой задачи перечислить все проводящие пути ЦНС, рассмотрим основные принципы организации этих путей на примере наиболее важных из них (рис. 30). Проводящие пути в ЦНС делятся на:

восходящие - образуются аксонами клеток, тела которых расположены в сером веществе спинного мозга. Эти аксоны в составе белого вещества направляются к верхним отделам спинного мозга, стволу головного мозга и коре больших полушарий.

нисходящие – образуются аксонами клеток, тела которых расположены в различных ядрах головного мозга. Эти аксоны по белому веществу спускаются к различным спинальным сегментам, заходят в серое вещество и оставляют свои окончания на тех или иных его клетках.

Отдельную группу образуют проприоспинальные проводящие пути. Они могут быль как восходящими, так и нисходящими, но они не выходят за пределы спинного мозга. Пройдя несколько сегментов, они вновь возвращаются в серое вещество спинного мозга. Эти пути расположены в самой глубокой части латерального и вентрального канатиков, они связывают между собой различные нервные центры спинного мозга. Например, центры нижних и верхних конечностей.

Восходящие проводящие пути.

Тракты Голля (тонкий пучок) и Бурдаха (клиновидный пучок). Основные восходящие пути проходят через дорсальные канатики спинного мозга и представляют собой аксоны афферентных нейронов спинномозговых ганглиев . Они проходят по всему спинному мозгу и заканчиваются в области продолговатого мозга в ядрах дорсального канатика, которые называют ядрами Голля и Бурдаха. Поэтому они и именуются тракт Голля и тракт Бурдаха .

1. Первое звено нейронов:

a. Волокна, расположенные в канатике медиальнее несут к ядру Голля афферентные сигналы от нижней части тела, в основном от нижних конечностей.

b. Волокна, расположенные латеральнее, идут к ядру Бурдаха и передают афферентные сигналы от рецепторов верхней части туловища и передних конечностей.

2. Второе звено нейронов:

В свою очередь аксоны клеток ядер Голля и Бурдаха в стволе головного мозга перекрещиваются и в виде плотного пучка поднимаются до промежуточного мозга. Этот пучок волокон, образованный уже аксонами клеток ядер Голля и Бурдаха получил название медиальной петли .

3. Третье звено нейронов :

Клетки ядер промежуточного мозга дают аксоны, направляющиеся в кору больших полушарий.

Все остальные восходящие пути начинаются не от нейронов спинномозговых ганглиев, а от нейронов, расположенных в сером веществе спинного мозга . Следовательно, их волокна являются волокнами не первого, а второго порядка.

1. Первым звеном в этих путях также служат нейроны спинномозговых ганглиев, но в сером веществе они оставляют свои окончания на клетках как бы «второго звена».

Клетки этого «второго звена» посылают свои аксоны к ядрам ствола головного мозга и коре больших полушарий. Основная масса волокон этих путей проходит в латеральном канатике.

Спинно-таламические пути (вентральный и латеральный) .

2. Второе звено нейронов:

Начинается в основании дорсального рога спинного мозга. Аксоны нейронов, образующих этот путь переходят на контралатеральную (противоположную) сторону, входят в белое вещество противоположного латерального или вентрального канатика и в нем поднимаются через весь спинной мозг и ствол головного мозга вплоть до ядер промежуточного мозга.

2. Третье звено нейронов :

Нейроны ядер промежуточного мозга переносят импульсацию в кору больших полушарий.

Все вышеописанные пути (Голля, Бурдаха и спинно-таламический) связывают рецептивные области каждой стороны тела с нейронами коры противоположного полушария.

Спинно-мозжечковые тракты. Еще два пути, проходящие в латеральных канатиках связывают спинной мозг с корой мозжечка .

Путь Флексинга – расположен дорсальнее и содержит волокна, непереходящие на противоположную сторону мозга. Это путь в спинном мозге начинается от нейронов ядра Кларка, аксоны которых достигают продолговатого мозга и поступают в мозжечок через нижнюю ножку мозжечка.

Путь Говерса – расположен вентральнее, содержит волокна, которые поднимаются вверх по латеральному канатику противоположной стороны тела, но в стволе мозга эти волокна снова перекрещиваются и входят в кору мозжечка с той стороны, на которой этот путь начинался. В спинном мозге начинается от ядер промежуточной зоны, аксоны вступают в мозжечок через верхнюю ножку мозжечка.

Если кора больших полушарий мозга всегда связана с афферентными волокнами противоположной стороны тела, то кора мозжечка получает волокна преимущественно от нейронных структур одноименной стороны.

Нисходящие проводящие пути. Волокна, идущие в нисходящем направлении, также подразделяются на несколько путей. В основе названия этих путей лежат названия тех отделов мозга, в которых они берут свое начало.

Кортико-спинальные (латеральный и вентральный) пути образованы аксонами пирамидных клеток нижних слоев моторной зоны коры больших полушарий. Часто эти пути называют пирамидными . Волокна проходят через белое вещество больших полушарий , основание ножек среднего мозга , по вентральным отделам Варолиева моста и продолговатого мозга в спинной мозг.

o Латеральный путь перекрещивается в нижней части пирамид продолговатого мозга и заканчивается на нейронах основания заднего рога.

o Вентральный путь пересекает пирамиды продолговатого мозга не перекрещиваясь. Перед вступлением в передний рог серого вещества соответствующего сегмента спинного мозга волокна этого пути переходят на противоположную сторону и заканчиваются на мотонейронах передних рогов контралатеральной стороны.

Таким образом, так или иначе, но двигательная область коры больших полушарий всегда оказывается связанной с нейронами противоположной стороны спинного мозга.

Рубро-спинальный путь – основной нисходящий путь среднего мозга , начинается в красном ядре . Аксоны нейронов красного ядра перекрещиваются сразу под ним и в составе белого вещества латерального канатика спускаются к сегментам спинного мозга, заканчиваясь на клетках промежуточной области серого вещества. Это связано с тем, что руброспинальная система наряду с пирамидной является основной системой контроля деятельности спинного мозга.

Текто-спинальный путь – Берет начало от нейронов четверохолмия среднего мозга и достигает мотонейронов передних рогов.

Проводящие пути, начинающиеся в продолговатом мозге:

Вестибуло-спинальный – начинается от вестибулярных ядер, главным образом от клеток ядра Дейтерса.

Ретикуло-спинальный – начинается от обширного скопления нервных клеток ретикулярной формации, занимающей центральную часть ствола мозга. Волокна каждого из этих путей заканчиваются на нейронах медиальной части переднего рога серого вещества спинного мозга. Основная часть окончаний располагаются на вставочных клетках.

Оливо-спинальный - образован аксонами клеток олив продолговатого мозга, заканчивается на мотонейронах передних рогов спинного мозга.

Раздел 4

ГОЛОВНОЙ МОЗГ

По своей физиологии отличается высокой организованностью и специализацией. Именно он проводит множество сигналов от периферических чувствительных рецепторов в мозг и обратно сверху вниз. Это возможно благодаря тому, что есть хорошо организованные пути спинного мозга. Мы рассмотрим некоторые их виды, расскажем, где располагаются проводящие пути спинного мозга, что они содержат.

Спина – зона нашего организма, где располагается позвоночник. В недрах крепких позвонков надежно спрятан мягкий и нежный ствол спинного мозга. Именно в спинном мозге есть уникальные пути, которые состоят из нервных волокон. Они являются главными проводниками информации с периферии к ЦНС. Первым их обнаружил выдающийся русский физиолог, невропатолог, психолог Сергей Станиславович Бехтерев. Он описал их роль для животного и человека, строение, участие в рефлекторной деятельности.

Пути спинного мозга бывают восходящими, нисходящими. Они представлены в таблице.

Виды

Восходящие:

  • Задние канатики. Они образуют целую систему. Это клиновидный и нижний пучки, через которые кожно-механические афферентные и двигательные сигналы проходят в продолговатый мозг.
  • Пути спиноталамические. По ним сигналы от всех рецепторов отправляются в головной мозг к таламусу.
  • Спиномозжечковые проводят импульсы в мозжечок.

Нисходящие:

  • Кортикоспинальный (пирамидный).
  • Пути экстрапирамидные, которые обеспечивают связь ЦНС со скелетными мышцами.

Функции

Проводящие пути спинного мозга образованы аксонами – окончаниями нейронов. Анатомия их состоит в том, что аксон очень длинный и соединяется с другими нервными клетками. Проекционные проводящие пути головного и спинного мозга проводят огромное количество нервных сигналов от рецепторов к ЦНС.

В этом сложном процессе участвуют нервные волокна, расположенные практически по всей длине спинного мозга. Сигнал проводится между нейронами и от разных отделов ЦНС к органам. Проводящие пути спинного мозга, схема которых достаточно запутана, обеспечивают беспрепятственное прохождение сигнала от периферии в ЦНС.

Они состоят в основном из аксонов. Эти волокна способны создавать связи между сегментами спинного мозга, находятся лишь в нем и не выходят за его пределы. Так обеспечивается контроль эффекторных органов.

Самая простая нейронная сеть – это рефлекторные дуги, которые обеспечивают вегетативный и соматический процессы. Первоначально нервный импульс возникает в окончании рецептора. Далее участвуют волокна чувствительного, вставочного и моторного нейрона.

Нейроны проводят сигнал в своем сегменте, а также обеспечивают его обработку и реакцию ЦНС на раздражение определенного рецептора.

В наших мышцах, органах, сухожилиях, рецепторах каждую секунду возникают сигналы, которые требуют немедленной обработки со стороны ЦНС. Туда они проводятся по специальным канатикам спинного мозга. Эти пути называют чувствительными или восходящими. Восходящие пути спинного мозга соединяются с рецепторами по периферии всего тела. Их образуют аксоны нейронов чувствительного типа. Тела этих аксонов расположены в спинальных ганглиях. Также участвуют вставочные нейроны. Их тела расположены в задних рогах (спинной мозг).

Как рождается осязание

Волокна, которые обеспечивают чувствительность, проходят разный путь. Например, от проприорецепторов пути направляются в мозжечок, кору. В эту область они направляют сигнал о том, в каком состоянии находятся суставы, сухожилия, мышцы.

Этот путь составляют аксоны нейронов чувствительного типа. Афферентный нейрон обрабатывает полученный сигнал и при помощи аксона проводит его к таламусу. После обработки в таламусе информация о двигательном аппарате направляется к постцентральной зоне коры. Тут происходит формирование ощущений о том, насколько напряжены мышцы, в каком положении находятся конечности, под каким углом согнуты суставы, есть ли вибрация, пассивные движения.

В тонком пучке также есть волокна, которые связаны с кожными рецепторами. Они проводят сигнал, который формирует информацию о тактильной чувствительности при вибрации, давлении, прикосновении.

Аксоны вторых вставочных нейронов образуют другие чувствительные пути. Область расположения тел этих нейронов – задние рога (спинной мозг). В своих сегментах эти аксоны создают перекрест, потом они по противоположной стороне направляются к таламусу.

В этом пути есть волокна, которые обеспечивают температурную, болевую чувствительность. Также здесь находятся волокна, которые участвуют в чувствительности тактильной. , расположенные в спинном мозге, воспринимают информацию от структур головного мозга.

Экстрапирамидные нейроны участвуют в образовании руброспинального, ретикулоспинального, вестибулоспинального, тектоспинального путей. По всем перечисленным путям проходят нервные эфферентные импульсы. Они отвечают за поддержание мышц в тонусе, выполнение различных непроизвольных движений, позу. В этих процессах участвуют приобретенные или врожденные рефлексы. В перечисленных путях происходит формирование условий для выполнения всех произвольных движений, которыми управляет кора головного мозга.

Спинной мозг проводит все сигналы, которые поступают от центров ВНС к нейронам, которые составляют симпатическую нервную систему. Эти нейроны располагаются в боковых рогах спинного мозга.

Также в процессе участвуют нейроны из парасимпатической нервной системы, которые локализуются тоже в спинном мозге (сакральный отдел). На указанные пути возложена функция поддержания в тонусе симпатической нервной системы.

Симпатическая и парасимпатическая нервные системы

Значение симпатической нервной системы трудно переоценить. Без нее невозможна работа сосудов, сердца, ЖКТ, всех внутренних органов.

Парасимпатическая система обеспечивает функционирование органов малого таза.

Чувство боли – одно из важнейших для нашей жизнедеятельности. Разберемся в том, как происходит процесс передачи сигнала через тройничный нерв.

Там, где моторные волокна кортикоспинального тракта перекрещиваются, до шейного отдела проходит спинальное ядро одного из самых крупных нервов – тройничного. Через область продолговатого мозга к его нейронам нисходят аксоны чувствительных нейронов. Именно от них отправляется в ядро сигнал о боли в зубах, челюстях, полости рта. Через тройничный нерв проходят сигналы от лица, глаз, глазниц.

Тройничный нерв крайне важен для получения тактильных ощущений от области лица, ощущения температуры. Если он поврежден, человек начинает страдать от сильнейшей боли, которая постоянно возвращается. Тройничный нерв очень крупный, он состоит из множества афферентных волокон и ядра.

Нарушения проводимости и их последствия

Случается так, что пути проведения сигналов могут нарушаться. Причины таких нарушений разные: опухоли, кисты, травмы, заболевания и т.д. Проблемы могут наблюдаться в разных зонах СМ. В зависимости от того, какая зона поражена, человек теряет чувствительность определенной части своего тела. Также могут появляться сбои опорно-двигательного аппарата, а при тяжелых поражениях больного может парализовать.

Крайне важно знать строение афферентных путей, ведь это позволяет определить, в какой зоне случилось повреждение волокон. Достаточно определить, в какой части тела нарушилась чувствительность или движения, чтобы сделать вывод, в каком пути мозга случилась проблема.

Мы достаточно схематично описали анатомию путей спинного мозга. Важно понять, что именно они ответственны за проведение сигналов от периферии нашего организма к ЦНС. Без них невозможно обработать информацию от зрительных, слуховых, обонятельных, тактильных, двигательных и других рецепторов. Без локомоторной функции нейронов и путей невозможно было бы совершить самое простое рефлекторное движение. Также они отвечают за работу внутренних органов, систем.

Пути спинного мозга лежат вдоль всего позвоночника. Они способны образовывать сложную и очень эффективную систему по обработке огромного количества поступающей информации, брать самое активное участие в мозговой деятельности. Важнейшую роль при этом выполняют направленные вниз, вверх и в стороны аксоны. Эти отростки преимущественно и составляют белое вещество.

Проводящие пути головного и спинного мозга объединены общей системой нервных волокон, обеспечивающих функциональность мозга, как отдельно, так и между собой. Благодаря работе проводящих путей обеспечивается интегративная работа ЦНС, взаимосвязь с внешними компонентами и нормализация организма в целом.

Действие проводящих путей

Спинной мозг обладает 2 видами проводящих путей (восходящие и нисходящие). Они способствуют передаче нервного сигнала к центрам расположения серого вещества для нормализации нервной деятельности.

К функции восходящих проводящих путей относится обеспечение выполнения движений тела, восприятие температурного режима, боли, тактильной восприимчивости.

Нисходящие проводящие пути спинного мозга обеспечивают скоординированность движений с сохранением равновесия. Кроме того, они ответственны за рефлексы, тем самым обеспечивая импульсную передачу к мышцам и мозговым оболочкам, что позволяет быстро передавать импульсы и осуществлять согласованное движение тела.

Классификация спинномозговых путей

Основная часть проводящих путей образована нейронами, что позволяет классифицировать их по функциональным особенностям нервных волокон:

  • комиссуральная связь;
  • ассоциативные проводящие пути;
  • проекционные волокна.

Нервные ткани располагаются в белом и сером веществе мозга и соединяют кору полушария и спинномозговые рога. Морфофункциональность проводящих нисходящих путей резко ограничивает передачу импульсом в одном направлении.


Основные восходящие спинномозговые пути

Проводниковая функция сопровождается следующими возможностями:

  • Ассоциативные пути – являются своего рода «мостом», который соединяет участки между ядром и корой мозгового вещества. Ассоциативные пути состоят из длинных (передача сигнала происходит в 2-3 сегментах мозгового вещества) и коротких (находящихся в 1 части полушария).
  • Комиссуральные пути – состоят из мозолистого тела, которое соединяет новые отделы в спинном и головном мозге, и расходятся в стороны в виде лучей.
  • Проекционные волокна – по функциональности могут быть афферентными и нисходящими. Место расположения этих волокон позволяет импульсу максимально быстро достигнуть коры полушария.


Проводниковая функция спинного мозга определяется нисходящими и восходящими путями

Помимо такой классификации, в зависимости от основных функций выделяются следующие формы проводящих путей:

  • Главной системой нервных волокон является корково-спинномозговой путь передачи импульса, который отвечает за двигательную активность. В зависимости от направления он разделяется на латеральную, корково-ядерную и корково-спинномозговую латеральную систему.
  • При проекционно-нисходящей нервной системе, которая начинается в корке среднего полушария и проходит через его канатик и ствол, заканчиваясь в передних рогах позвоночного столба, отмечается присутствие покрышечно-спинномозгового пути передачи импульса.
  • Диагностирование преддверно-спинномозгового пути нормализует работу в вестибулярном аппарате. При этом нервные ткани проходят в передней части спинномозгового канатика, начинаясь с латерального ядра в области преддверно-улиткового нерва.
  • Проведение нервного импульса от мозгового полушария к серому веществу и улучшение мышечного тонуса принадлежит ретикулярно-спинномозговому пути развития.

Важно помнить, что проводящие пути объединяются совокупностью всех нервных окончаний, которые обеспечивают поступление сигнала в различные отделы мозга.

Последствия спинномозгового повреждения

Патологические изменения в функции проводимости способны привести к нарушению функциональности организма, появлению болей, недержанию мочи и т.д. В результате получения различных видов травм, спинномозговых заболеваний и пороков развития возможно снижение или полное прекращение проводимости нервных рецепторов.


При нарушении импульсной проводимости возникает парез нижних конечностей

Полное нарушение проводимости импульса может сопровождаться парализацией и потерей чувствительности конечностей. Кроме того, наблюдаются нарушения работы внутренних органов, за функциональность которых отвечают поврежденные нейроны. Например, при поражениях нижней спинномозговой части возможна самопроизвольная дефекация.

В зависимости от тяжести повреждения спинномозговых нервов после получения травмы или в результате заболевания, возможны следующие проявления:

  • развитие застойной пневмонии;
  • образование пролежней и трофических язв;
  • инфекции мочевыводящих путей;
  • синдром Спастика (патологическое сокращение парализованных мышц), сопровождающийся болью, тугоподвижностью конечности и образованием контрактур;
  • септическое заражение крови;
  • нарушение поведенческих реакций (дезориентация, пугливость, заторможенная реакция);
  • психологическое изменение, проявляющееся резкими колебаниями в настроении, депрессивным состоянием, беспричинным плачем (смехом), бессонницей и т.д.

Нарушение проводимости и рефлекторной деятельности наблюдается сразу после выявления дегенеративного патологического изменения. При этом происходит некроз нервных клеток, что приводит к ускоренному прогрессированию болезни, требующего незамедлительного лечения. Последствия такого состояния определяются тяжестью негативной симптоматики и тем, какие именно клетки были повреждены.

Методы восстановления проходимости спинного мозга

Все лечебные мероприятия в первую очередь направлены на прекращение клеточного некроза и устранение факторов, которые явились катализаторами такого состояния.

Медикаментозная терапия предусматривает применение лекарственных препаратов, которые препятствуют отмиранию мозговых клеток и обеспечивают достаточное кровоснабжение поврежденных участков в спинном мозге. При этом обязательно следует учитывать возрастную категорию пациента и серьезность поражения. Кроме того, для того, чтобы обеспечивать дополнительную стимуляцию нервных клеток, рекомендуется использование электрических импульсов, которые поддерживают тонус мышц.

При необходимости проводится хирургическое вмешательство для восстановления проводимости, которое затрагивает 2 направления: удаление катализатора и стимулирование спинного мозга для обеспечения восстановления утраченной функции.


Операция по восстановлению проводимости выполняется опытными нейрохирургами с использованием самых современных способов наблюдения за процессом

До начала операции выполняется глубокое диагностическое обследование пациента, позволяющее выявить локализацию дегенеративного процесса, после чего нейрохирурги сужают операционное поле. При тяжелом течении симптоматики действие врача в первую очередь направлено на устранение компрессии, которая спровоцировала спинальный синдром позвоночника.

Помимо оперативного и терапевтического лечения, нередко используется апитерапия, траволечение и гирудотерапия, которые оказывают положительное воздействие на структурные проводящие пути позвоночного столба и головного мозга. Однако следует учитывать, что во всех случаях требуется обязательная врачебная консультация.

Необходимо учитывать, что восстановление нейронной связи после различного рода негативных воздействий требует длительного лечения. В этом случае большое значение имеет раннее обращение за высококвалифицированной помощью. В противном случае значительно снижаются шансы на восстановление функциональности спинного мозга. Это указывает на то, что проводящие пути в головном и спинном мозге тесно взаимодействуют друг с другом, объединяя весь организм, что обеспечивает единство действий.