Актуальность . Существование гематоэнцефалического барьера (ГЭБ) является необходимым и наиболее важным условием для нормального функционирования центральной нервной системы (ЦНС), поэтому одной из ключевых задач, решение которой имеет не только фундаментальное, но и прикладное значение, является изучение механизмов функционирования ГЭБ. Известно, что физиологическая проницаемость ГЭБ уступает место патологической при различных видах патологии ЦНС (ишемия, гипоксия головного мозга, травмы и опухоли, нейродегенеративные заболевания), причем изменения проницаемости носят избирательный характер и зачастую являются причиной неэффективности фармакотерапии.

Гематоэнцефалический барьер (ГЭБ) - осуществляет активное взаимодействие между кровотоком и ЦНС, являясь высоко-организованной морфо-функциональной системой, локализованной на внутренней мембране сосудов головного мозга и включающей [1 ] церебральные эндотелиоциты и [2 ] комплекс поддерживающих структур: [2.1 ] базальную мембрану, к которой со стороны ткани мозга прилежат [2.2 ] перициты и [2.3 ] астроциты (имеются сообщения о том, что аксоны нейронов, которые содержат вазоактивные нейротрансмиттеры и пептиды, также могут вплотную граничить с эндотелиальными клетками, однако эти взгляды разделяются не всеми исследователями). За редким исключением ГЭБ хорошо развит во всех сосудах церебрального микроциркуляторного русла диаметром менее 100 мкм. Эти сосуды, включающие в себя собственно капилляры, а также пре- и посткапилляры, объединяются в понятие микрососуды.



Обратите внимание ! Только у небольшого количества образований головного мозга (около 1 - 1,5%) ГЭБ отсутствует. К таким образованиям относят: хориоидальные сплетения (основное), эпифиз, гипофиз и серый бугор. Однако и в этих структурах существует гематоликворный барьер, но иного строения.

читайте также пост: Нейроглия (на сайт)

ГЭБ выполняет барьерную (ограничивает транспорт из крови в мозг потенциально токсичных и опасных веществ: ГЭБ - высокоселективный фильтр), транспортную и метаболическую (обеспечивает транспорт газов, питательных веществ к мозгу и удаление метаболитов), иммунную и нейросекреторную функции, без которых невозможно нормальное функционирование ЦНС.

Эндотелиоциты . Первичной и важнейшей структурой ГЭБ являются эндотелиоциты церебральных микрососудов (ЭЦМ), которые значительно отличаются от аналогичных клеток других органов и тканей организма. Именно им отводится [!!! ] основная роль непосредственной регуляции проницаемости ГЭБ. Уникальными структурными характеристиками ЭЦМ являются: [1 ] наличие плотных контактов, соединяющих мембраны соседних клеток, как замок «молния», [2 ] высокое содержание митохондрий, [3 ] низкий уровень пиноцитоза и [4 ] отсутствие фенестр. Данные барьерные свойства эндотелия обусловливают очень высокое трансэндотелиальное сопротивление (от 4000 до 8000 W/см2 in vivo и до 800 W/см2 в кокультурах эндотелиоцитов с астроцитами in vitro) и практически полную непроницаемость монослоя барьерного эндотелия для гидрофильных веществ. Необходимые ЦНС питательные вещества (глюкоза, аминокислоты, витамины и пр.), а также все белки транспортируются через ГЭБ только активно (т.е. с затратой АТФ): либо путем рецептор-опосредованного эндоцитоза, либо с помощью специфических транспортеров. Основные отличия эндотелиоцитов ГЭБ и периферических сосудов представлены в таблице:


Кроме указанных особенностей, ЭЦМ ГЭБ секретируются вещества, регулирующие функциональную активность стволовых клеток ЦНС в постнатальном периоде: лейкемия ингибирующий фактор - LIF, нейротрофический фактор мозга - BDNF, костный морфоген - BMP, фактор роста фибробластов - FGF и др. ЭЦМ формируют и так называемое трансэндотелиальное электрическое сопротивление - барьер для полярных веществ и ионов.

Базальная мембрана . ЭЦМ окружает и поддерживает экстрацеллюлярный матрикс, который отделяет их от периэндотелиальных структур. Другое название данной структуры - базальная мембрана (БМ). Отростки астроцитов, окружающих капилляры, а также перициты внедрены в базальную мембрану. Экстрацеллюлярный матрикс является НЕклеточным компонентом ГЭБ. В состав матрикса входят ламинин, фибронектин, различные типы коллагенов, тенасцин и протеогликаны, экспрессируемые перицитами и эндотелиоцитами. БМ обеспечивает механическую поддержку окруженных ею клеток, отделяя эндотелиоциты капилляров от клеток ткани мозга. Кроме этого, она обеспечивает субстрат для миграции клеток, а также выступает в роли барьера для макромолекул. Адгезия клеток к БМ определяется интегринами - трансмембранными рецепторами, которые соединяют элементы цитокселета клетки с экстрацеллюлярным матриксом. БМ, окружая эндотелиоциты сплошным слоем, является последней физической преградой транспорту крупномолекулярных веществ в составе ГЭБ.

Перициты . Перициты являются удлиненными клетками, расположенными вдоль продольной оси капилляра, которые своими многочисленными отростками охватывают капилляры и посткапиллярные венулы, контактируют с эндотелиальными клетками, а также аксонами нейронов. Перициты передают нервный импульс от нейрона на эндотелиоциты, что приводит к накоплению или потере клеткой жидкости и, как следствие, изменению просвета сосудов. В настоящее время перициты считаются мало-дифференцированными клеточными элементами, участвующими в ангиогенезе, эндотелиальной пролиферации и воспалительных реакциях. Они оказывают стабилизирующий эффект на новые сформировавшиеся сосуды и приостанавливают их рост, влияют на пролиферацию и миграцию эндотелиальных клеток.

Астроциты . Работа всех транспортных систем ГЭБ контролируется астроцитами. Эти клетки окутывают своими окончаниями сосуды и контактируют непосредственно с эндотелиоцитами, оказывают существенное влияние на формирование плотных контактов между эндотелиоцитами и определяют свойства эндотелиоцитов ГЭБ. При этом эндотелиоциты приобретают способность к повышенной экструзии ксенобиотиков из ткани мозга. Астроциты, также как и перициты, являются посредниками в передаче регулирующих сигналов от нейронов к эндотелиоцитам сосудов через кальций-опосредованные и пуринергические взаимодействия.

Нейроны . Капилляры головного мозга иннервируются норадрен-, серотонин-, холин- и ГАМКергическими нейронами. При этом нейроны входят в состав нейроваскулярной единицы и оказывают существенное влияние на функции ГЭБ. Они индуцируют экспрессию ГЭБ-ассоциированных белков в эндотелиоцитах головного мозга, регулируют просвет сосудов головного мозга, проницаемость ГЭБ.

Обратите внимание ! Перечисленные выше структуры (1 - 5) составляют первый, [1 ] физический, или структурный компонент ГЭБ. Второй, [2 ] биохимический компонент, образован транспортными системами, которые расположены на люминальной (обращенной в просвет сосуда) и аблюминальной (внутренней или базальной) мембране эндотелиоцита. Транспортные системы могут осуществлять как перенос веществ из кровотока к мозгу (influx), так и/или обратный перенос из ткани мозга в кровоток (efflux).

Читайте также :

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 1: Строение и формирование гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №3, 2013) [читать ];

статья «Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: Функции и механизмы повреждения гематоэнцефалического барьера» Блинов Д.В., ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва (журнал «Эпилепсия и пароксизмальные состояния» №1, 2014) [читать ];

статья «Основные функции гематоэнцефалического барьера» А.В. Моргун, Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого (Сибирский медицинский журнал, №2, 2012) [читать ];

статья «Фундаментальные и прикладные аспекты изучения гематоэнцефалического барьера» В.П. Чехонин, В.П. Баклаушев, Г.М. Юсубалиева, Н.Е. Волгина, О.И. Гурина; Кафедра медицинских нанобиотехнологий РНИМУ им. Н.И. Пирогова, Москва; ФГБУ «Государственный научный центр социальной и судебной психиатрии им. В.П. Сербского» МЗ РФ (журнал «Вестник РАМН» №8, 2012) [читать ];

статья «Проницаемость гематоэнцефалического барьера в норме, при нарушении развития головного мозга и нейро-дегенерации» Н.В. Кувачева и соавт., Красноярский государственный медицинский университет им. профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения РФ, Красноярск (Журнал неврологии и психиатрии, №4, 2013) [читать ]

читайте также пост: Нейроваскулярная единица (на сайт)


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “нейроанатомия” Tag

  • … сосуды головного мозга имеют ряд уникальных структурных и функциональных характеристик, отличающие их от сосудов других органов и тканей. В…

  • Островок (островковая доля)

    … единственная доля мозга, не имеющая выхода на его поверхность. Островковая доля (островок, инсула, или островок Рейля) (далее ОД) -…

  • Нарушение ориентации в пространстве

    ТОПОГРАФИЧЕСКАЯ ДЕЗОРИЕНТАЦИЯ Под топографической дезориентацией [у человека] понимают нарушение его способности узнавать местность и ее…

Нейроглию подразделяют на макроглию и микроглию. Клетки макроглии – астроциты, олигодендроциты и эпендимоциты выполняют в нервной системе важные функции.

Олигодендроциты образуют мякотные (миелиновые) оболочки вокруг нервных волокон (рис. 59). Олигодендроциты также окружают со всех сторон нейроны и обеспечивают для них питание и выделение.

Астроциты осуществляют опорную функцию, заполняя пространство между нейронами, а также замещая погибшие нервные клетки. На нейроне обычно оканчиваются аксоны многих других нервных клеток, и все они изолированы друг от друга астроцитами. Астроциты очень часто заканчиваются своими отростками на кровеносных сосудах, образуя так называемые сосудистые ножки (рис. 60) и участвуя в образовании гематоэнцефалического барьера. Астроциты также способны уничтожать микробы и вредные вещества.

Эпендимоциты – это эпителиальные клетки, выстилающие полости желудочков мозга. Один отросток эпендимоцита доходит до кровеносного сосуда. Полагают, что эпендимоциты являются посредниками между кровеносным сосудом и полостью мозговых желудочков, заполненных спинномозговой жидкостью.

Источником клеток микроглии служат мозговая оболочка, стенка кровеносных сосудов и сосудистая оболочка желудочков мозга. Клетки микроглии способны передвигаться. Они осуществляют захват и последующую переработку попавших в организм микробов, инородных веществ, а также отмерших элементов мозга. Скопления клеток микроглии часто наблюдаются около участков поврежденного мозгового вещества.

Большую роль клетки нейроглии играют в осуществлении барьера между кровью и мозгом, так называемого гематоэнцефалического барьера . Не все вещества, попадающие в кровь, могут проникнуть в мозг. Они задерживаются гематоэнцефалическим барьером, который предохраняет мозг от поступления из крови различных вредных для него веществ, а также многих бактерий. В выполнении барьерных функций наряду с другими структурными образованиями участвуют астроциты. Сосудистые ножки астроцитов со всех сторон окружают кровеносный капилляр, плотно соединяясь между собой.

Если по каким-то причинам гематоэнцефалический барьер нарушается, то микробы или ненужные вещества могут проникнуть в мозг и в первую очередь в цереброспинальную жидкость. Цереброспинальная, или спинномозговая жидкость , или ликвор – это внутренняя среда мозга, поддерживающая его солевой состав, участвующая в питании мозговых клеток и удалении из них продуктов распада. Она также поддерживает внутричерепное давление, является гидравлической подушкой мозга, предохраняющей нервные клетки от повреждений при ходьбе, беге, прыжках и других движениях.


Цереброспинальная жидкость заполняет желудочки головного мозга, центральный канал спинного мозга, пространства между оболочками, как головного, так и спинного мозга. Она постоянно циркулирует. Нарушение ее циркуляции ведет к расстройствам деятельности ЦНС. Количество цереброспинальной жидкости у взрослого человека равно 120–150 мл. Главным местом ее образования являются сосудистые сплетения желудочков мозга. Спинномозговая жидкость обновляется 3–7 раз в сутки. В ней отсутствуют ферменты и иммунные тела, содержится небольшое количество лимфоцитов. В ней меньше, чем в крови, белков и примерно такое же, как в крови, содержание минеральных солей.

Многие вещества, находящиеся в крови или искусственно вводимые в кровь, совсем не попадают в спинномозговую жидкость и соответственно в клетки мозга. Гематоэнцефалический барьер практически непроницаем для многих биологически активных веществ крови: адреналина, ацетилхолина, серотонина, гамма-аминомасляной кислоты, инсулина, тироксина и др. Также он мало проницаем для многих антибиотиков, например пенициллина, тетрациклина, стрептомицина. Поэтому некоторые лекарства, например многие антибиотики, для лечения нейронов спинного или головного мозга приходится вводить непосредственно в цереброспинальную жидкость, прокалывая оболочки спинного мозга. Вместе с тем, такие вещества как алкоголь, хлороформ, морфий, столбнячный токсин легко проникают через гематоэнцефалический барьер в цереброспинальную жидкость и быстро действуют на нейроны мозга.

Проницаемость гематоэнцефалического барьера регулируется центральной нервной системой. Благодаря этому мозг может в определенной мере сам регулировать собственное функциональное состояние. Кроме того, в отдельных областях головного мозга гематоэнцефалический барьер слабо выражен. В этих областях капилляры не полностью окружены астроцитами и нейроны могут непосредственно контактировать с капиллярами. Гематоэнцефалический барьер слабо выражен в гипоталамусе, эпифизе, нейрогипофизе, на границе продолговатого и спинного мозга. Высокая проницаемость барьера в этих областях мозга позволяет ЦНС получить информацию о составе крови и спинномозговой жидкости, а также обеспечить попадание в кровь секретируемых в ЦНС нейрогормонов.

5.6. Мембранные потенциалы нервных клеток

Гематоэнцефалический барьер – это своего рода преграда, которая препятствует прониканию из крови в ткань мозга токсических веществ, микроорганизмов, а также антибиотиков.
Мозговой барьер – это фильтр, сквозь который из артерии в мозг попадают полезные вещества, а в венозное русло выводятся различные отработанные продукты. Барьер на пути к мозгу является механизмом, защищающим ткани от посторонних элементов и регулирующим неизменность состава межклеточной жидкости.

Общая информация о гематоэнцефалическом барьере

Естественный заслон способствует защите ткани мозга от всевозможных инородных тел и ядовитых шлаков, которые проникли в кровь или образовались непосредственно в организме. Преграда задерживает компоненты, которые могут навредить очень чувствительным клеткам головного, а также спинного мозга.
Функция ГЭБ – это установить некий щит, способствующий избирательной пропускаемости.

Естественный барьер на пути к тканям мозга пропускает одни вещества и является непроницаемым для иных. Правда, непроницаемость данной преграды относительна и зависит от здоровья человека, от длительности пребывания и концентрации различных веществ в его крови, от всякого рода внешних причин. Сам барьер состоит из различных анатомических компонентов. А они не только оберегают мозг, но и следят за его питанием, обеспечивают жизнедеятельность, выводят отработанные продукты.

ГЭБ является механизмом, который налаживает попадание имеющихся в крови полезных компонентов в спинномозговую жидкость и нервную ткань. Это не какая-то совокупность органов, а функциональная концепция. Большинство полезных веществ поступает в ткани мозга не через ликворные маршруты, а благодаря капиллярам.

Физиология — как работает ГЭБ

Мозговой барьер – это не отдельный орган тела, а совокупность различных анатомических составляющих. Эти составляющие исполняют роль преграды и обладают другими полезными свойствами. Мозговые капилляры – первые компоненты, входящие в структуру этого своеобразного преграждения.
Главная задача мозговых капилляров – это доставка крови непосредственно к мозгу человека. Через стенки клеток в мозг проникает всё необходимое питание, а продукты обмена, наоборот, выводятся. Процесс этот происходит непрерывно. Но только не все вещества, находящиеся в крови, могут проникнуть сквозь эти стенки.

Мозговые капилляры – это своего рода первоначальная оборонительная линия. Для некоторых веществ она проходима, а для остальных – полупроницаема или совершенно непроходима. Структура капилляров, точнее, их внутренней прослойки такова, что разнообразные компоненты перемещаются из крови в ликвор сквозь щёлочки между клетками, а также сквозь тончайшие зоны этих клеток.
Причём стенки капилляров не обладают такими порами, как клетки иных органов. Эти элементы попросту нагромождаются друг на дружку. Места стыковок между ними заслонены специальными пластинами. Щёлочки между клетками слишком узенькие. Передвижение жидкости из капилляров в нервную ткань происходит сквозь их стенки.

Структура клеток капилляров имеет некоторые особенности. Клетки состоят из набора митохондрий, а это является признаком о происходящих в них энергетических процессах. В капиллярных клетках слишком мало вакуолей, в особенности в прилегающей к просвету капилляра стороне. Но на рубеже с нервной материей их количество намного выше. А это свидетельствует о том, что пропускаемость капилляра по направлению из кровеносной системы к тканям мозга намного ниже, чем в противоположной направленности.

Важную роль в реализации преграждающей задачи капилляров играет находящаяся под покровом эндотелиальных элементов очень стойкая мембрана с прослойкой гликокаликса. А составляющие эту прослойку компоненты создают своего рода сеть, которая является ещё одним преграждением для молекул разных компонентов. Капилляры мозга имеют ферменты, которые снижают активность некоторых химических компонентов, перемещающихся из крови в ткань человеческого мозга.
Но одних капилляров мало для осуществления заградительной задачи. Вторая черта преграждений располагается между капиллярами и нейронами. В этом месте природой создано переплетение астроцитов с их отростками и образование ещё одного защитного слоя – нейроглии.

Покрывается почти весь поверхностный слой мозговых капилляров благодаря присосковым ножкам астроцитов. Они также могут расширять просвет капилляра, или, наоборот, его уменьшать. С их помощью происходит питание нейронов. Присосковые ножки вытягивают из крови нужные нейронам питательные компоненты, а обратно выводят отработанные продукты.
Но естественная преграда состоит не только лишь из нейроглии. Препятствующими свойствами характеризуются обволакивающие мозг мягкие оболочки, а также сосудистые переплетения его боковых желудочков. Пропускаемость сосудистых переплетений, вернее, их капилляров, намного выше, чем мозговых капилляров. А щели между их клетками гораздо шире, но они замкнуты очень прочными контактами. Именно здесь и находится третья ступень ГЭБ.

Мозговой заслон не только бережёт мозг от посторонних и ядовитых компонентов, имеющихся в крови, но и стабилизирует состав питательной среды, в которой находятся нервные клетки.

Нужные для жизнедеятельности компоненты мозг получает благодаря присосковым ножкам клеток, а также через ликвор. В мозге имеются внеклеточные участки. А на дне микробороздок мозга есть мельчайшие проходы, которые открываются в межклеточные участки. Благодаря ним питательная жидкость прмщатся в мозг и служит питанием для нейронов.

Есть 2 способа питания мозга:
благодаря спинномозговой жидкости;
сквозь капиллярные стенки.

У здорового человека основным путём попадания компонентов в нервные ткани является гематогенный, а ликворный маршрут – дополнительный. Каким компонентам перемещаться в мозг, а каким нет, решает ГЭБ.

Проницаемость барьера

Мозговая преграда не только останавливает и не допускает к мозгу некоторые вещества, имеющиеся в крови, но и доставляет нужные для метаболизма нервной ткани компоненты. Гидрофобные компоненты, а также пептиды перемещаются в ткани мозга сквозь каналы мембраны клеток, с помощью различных транспортных систем или диффузии.

Существуют такие способы перемещения через ГЭБ:

  1. Межклеточный. Суть системы: питательные продукты передвигаются в мозг сквозь стенки клеток.
  2. Благодаря каналам. В мембране клеток имеются щели – аквапоры. Через них происходит попадание воды. Для глицерина на поверхности мембран клеток также имеются специальные проходы – акваглицеропорины.
  3. Диффузия. Передвижение компонентов может происходить сквозь клеточные мембраны и сквозь межклеточные контакты. Чем липофильнее и меньше проходящее вещество, тем проще оно диффундирует сквозь мембрану клеток.
  4. Диффузия (облегчённая). Многие полезные для мозга компоненты (различные аминокислоты) слишком большие, чтобы пройти сквозь клеточную мембрану. Для них на поверхности клеток существуют специальные транспортёры, а также белковые молекулы.
  5. Активные транспортёры. Перенос различных веществ требует расходов клеточной энергии и осуществляется благодаря активным транспортёрам.
  6. Везикулярный. Происходит связывание полезных для мозга компонентов, перемещение их во внеклеточные участки и высвобождение связанных элементов.

ГЭБ есть во многих участках мозга. Но в шести анатомических образованиях его нет. Отсутствует барьер на дне 4 желудочка, в шишковидном теле, в нейрогипофизе, в прикреплённой пластинке мозга, в субфорникальном и субкомиссуральном органах.
Проницаемость естественного барьера обуславливается состоянием здоровья человека, а также содержанием в крови гормонов. Болезненное состояние приводит к повышению проницаемости.

Повреждения барьерного щита бывают при таких болезнях:

  • бактериальная инфекция ЦНС;
  • вирусы;
  • опухоли мозга;
  • сахарный диабет.

Таким образом, у здорового человека мозговой щит работает отлично и служит преградой для прохождения разнообразных компонентов в мозг. Происходит это благодаря капиллярам мозга. Их клетки не имеют пор. Кроме того, роль дополнительной липидной преграды играют и астроглии. Сквозь естественную преграду плохо проходят полярные образования. Но липофильные молекулы проходят к мозгу очень просто. Заслон преодолевается в основном благодаря диффузии или активному передвижению. В организме есть участки мозга, в которых барьер не действует (задняя стенка гипофиза, эпифиз). Если человек болеет, то проходимость становится выше.

Использование ГЭБ в фармакологии

Мозговой барьер избирательно проходим для различных лекарственных средств. Для того чтобы излечить заболевания мозга лекарства должны проникнуть в его ткани. А это не всегда возможно. Но во время воспалительных заболеваний мозга проницаемость барьера несколько повышается, в результате чего сквозь него проходят лекарства, которые при нормальном состоянии не преодолели бы это препятствие.
При воспалительных процессах важно преодолеть преграждающий заслон. Ведь нужно добиться проникновения лекарств в мозг. Но при искусственном преодолении естественного препятствия в мозг порой перемещаются не только лекарства, но и вредные шлаки.

В медицинской практике самым эффективным методом лечения мозга является ввод лекарства в желудочки мозга, другими словами, в обход барьера.

Лекарства, которые плохо проникают сквозь мозговой барьер, могут вводиться под оболочки мозга. Таким образом лечится менингит, а также воспаление мозга.
Медикаменты разрабатываются с учётом проходимости мозгового барьера.

Синтетические анальгетики, имеющие в своём составе морфин, наоборот, обязаны лишь избавлять человека от боли, но не проходить ГЭБ. Существуют антибиотики, лечащие воспалительные процессы, которые отлично проходят мозговой барьер. К ним относятся: «Нифурател», «Макмирор», «Бимарал», «Метоклопрамид». Хорошо проходят барьер медикаменты: «Мотилиум», «Мотилак». Наилучшая степень прохождения мозгового барьера у «Ампицилина» и «Цефазолина». Способность проникать сквозь ГЭБ у жирорастворимых соединений намного выше, чем у водорастворимых веществ.

По определению Штерн, (ГЭБ, blood-brain barrier (BBB))- это совокупность физиологических механизмов и соответствующих анатомических образований в центральной нервной системе, участвующих в регулировании состава цереброспинальной жидкости (ЦСЖ). Это определение из книги Покровского и Коротько "Физиология человека" .

Гематоэнцефалический барьер регулирует проникновение из крови в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.
В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее:
1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр - нервная клетка;
2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, характеризующим определенный физиологический механизм. Как любой существующий в организме физиологический механизм, гематоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем;
3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятельности и метаболизма нервной ткани.
Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.
Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Гистологическая структура


Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
Ведущим компонентом гематоэнцефалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения вещества в клетки мозга:
- через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь)
- через стенку капилляра.
У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Морфологическим субстратом ГЭБ являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции ГЭБ придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

Функционирование ГЭБ

В основе функционирования ГЭБ лежат процессы диализа, ультрафильтрации, осмоса, а также изменение электрических свойств, растворимости в липидах, тканевого сродства или метаболической активности клеточных элементов. Важное значение в функционирование придается ферментному барьеру, например, в стенках микрососудов мозга и окружающей их соединительнотканной стромы (гематоэнцефалический барьер) - обнаружена высокая активность ферментов - холинэстеразы, карбоангидразы, ДОФА-декарбоксилазы и др. Эти ферменты, расщепляя некоторые биологически активные вещества, препятствуют их проникновению в мозг.
Водорастворимые молекулы не могут свободно диффундировать между кровью и ЦСЖ из-за непроницаемых жестко связанных соединений между эпителиальными клетками сосудистых сплетений, вместо этого эпителиальные клетки переносят определенные молекулы с одной стороны барьера на другую. Как только молекулы попадают в ЦСЖ, они диффундируют через «протекающий» эпителиальный слой и достигают интерстициальной жидкости, окружающей нейроны и глиальные клетки.
1.Эндотелиальная клетка
2.Плотное соединение
3.Церебральный капилляр
4.Нейрон
5.Глюкоза
6.Интерстициальная жидкость
7.Глиальная клетка
8.Эпендимный слой

1.Хориоидальное сплетение, эпителиальная клетка
2.Капилляр
3.Плотное соединение
4.Эпендимный слой

Эпителиальные клетки переносят определенные молекулы из капилляров внутрь желудочков головного мозга. Поток ионов, пересекающий ГЭБ (кровь-ЦСЖ) регулируется несколькими механизмами в сосудистом сплетении:
1.Кровеносный сосуд (плазма)
2.Базолатеральная (нижнебоковая) поверхность
3.Эпителиальная клетка сосудистого сплетения
4.Жесткая связь
5.Желудочки
6.Апикальная (верхняя) поверхность
7.СМЖ в желудочке
8.Ионный обмен

Молекулы воды в эпителиальных клетках диссоциируют на ионы водорода и гидроксильные ионы. Гидроксильные ионы комбинируются с двуокисью углерода, которая является продуктом клеточного метаболизма. На поверхности базолатеральных клеток ионы водорода обмениваются на внеклеточные ионы натрия из плазмы. В желудочках мозга ионы натрия активно переносятся через апикальную поверхность клетки (верхушку). Это сопровождается компенсаторным движением ионов хлорида и бикарбоната в ЦСЖ. Для поддержания осмотического равновесия вода движется в желудочки.

Проницаемость и регуляция ГЭБ

ГЭБ рассматривают в качестве саморегулирующейся системы, состояние
которой зависит от потребностей нервных клеток и уровня метаболических
процессов не только в самом мозге, но и в других органах и тканях
организма. Проницаемость ГЭБ неодинакова в разных отделах мозга,
селективна для разных веществ и регулируется нервными и гуморальными
механизмами. Важная роль в нейрогуморальной регуляции функций ГЭБ
принадлежит изменению интенсивности метаболических процессов в ткани
мозга, что доказывается угнетающим влиянием ингибиторов метаболических
процессов на скорость транспорта аминокислот в мозг и стимуляцией их
поглощения субстратами окисления.
Регуляция функций гематоэнцефалического барьера осуществляется высшими отделами ЦНС и гуморальными факторами. Значительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. При различных видах церебральной патологии, например травмах, различных воспалительных поражениях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фармакологическими воздействиями можно увеличить или уменьшить проникновение в мозг различных веществ, вводимых извне или циркулирующих в крови. Проникновение в мозг в области гипоталамуса, где ГЭБ «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы. Имеются многочисленные доказательства снижения защитной функции ГЭБ под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д. В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р уменьшать проникновение в мозг определенных веществ.

ГЭБ- это система защиты мозга от внешних повреждающих факторов. Как говорилось выше, при травмах, патологических процессах она может нарушаться. Кроме того, у некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер.
Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит. Менингит новорожденных, например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульные полисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру.

ГЭБ работает как селективный фильтр, пропускающий в цереброспинальную жидкость одни вещества и не пропускающий другие, которые могут циркулировать в крови, но чужды мозговой ткани. Так, не проходят через ГЭБ адреналин, норадреналин, ацетилхолин, дофамин, серотонин, гамма-аминомасляная кислота (ГАМК), пенициллин, стрептомицин.

Билирубин всегда находится в крови, но никогда, даже при желтухе, он не проходит в мозг, оставляя неокрашенной лишь нервную ткань. Поэтому трудно получить эффективную концентрацию какого-либо лекарственного препарата, чтобы оно достигло паренхимы мозга. Проходят через ГЭБ морфий, атропин, бром, стрихнин, кофеин, эфир, уретан, алкоголь и гамма-оксимасляная кислота (ГОМК). При лечении, например, туберкулезного менингита стрептомицин вводят непосредственно в цереброспинальную жидкость, минуя барьер с помощью люмбальной пункции.

Необходимо учесть необычность действия многих веществ, введенных непосредственно в цереброспинальную жидкость. Трипановый синий при введении в цереброспинальную жидкость вызывает судороги и смерть, аналогичное действие оказывает желчь. Ацетилхолин, введенный непосредственно в мозг, действует как адреномиметик (аналогично адреналину), а адреналин, наоборот, - как холиномиметик (аналогично ацетилхолину) : артериальное давление понижается, возникает брадикардия, температура тела вначале снижается, а потом повышается.
Он вызывает наркотический сон, заторможенность и аналгезию. Ионы К+ выступают в качестве симпатомиметика, а Са2+ - парасимпатомиметика . Лобелин - рефлекторный стимулятор дыхания, проникая через ГЭБ, вызывает ряд побочных реакций (головокружение, рвоту, судороги). Инсулин при внутримышечных инъекциях снижает содержание сахара крови, а при непосредственном введении в цереброспинальную жидкость - повышает.

Все лекарства, выпускающиеся в мире, делятся на проникаюшие и не проникающие через ГЭБ. Это является большой проблемой- некоторые лекарства не должны проникать (но проникают), а некоторые наоборот- должны проникать для достижения терапевтического эффекта, но не могут в силу своих свойств. Факмакологи занимаются разрешением этой проблемы с помощью компьютерного моделирования и экспериментальных исследований.

ГЭБ и старение

Как говорилось выше, одна из важнейших частей ГЭБ- астроциты. Формирование ГЭБ и является их основной функцией в мозге.
Проблема трансформации клеток (РГ) в звездчатые астроциты в
постнатальный период развития лежит в основе астроцитной теории
старения млекопитающих.
Имеет место исчезновение эмбриональных радиальных путей миграции клеток
от места их пролиферации к местам их конечной локализации в мозгу
взрослой особи, что является причиной постмитотичности мозга
млекопитающих. Исчезновение РГ индуцирует целый каскад системных
процессов, которые названы как механизм возрастзависимого
самоуничтожения млекопитающих (МВСМ). Исчезновение клеток РГ делает
невозможной замену исчерпавших свой жизненный ресурс нейронов
(Бойко,2007).
Возрастные изменения ГЭБ еще не изучены полностью.В повреждении ГЭБ несомненную роль играют атеросклероз, алкоголизм и др. заболевания. При недостаточном функционировании ГЭБ начинается проникновение холестерина и аполипопротеина в ткань мозга, что ведет к большему повреждению ГЭБ.
Возможно, изучив возрастные изменения ГЭБ, ученые смогут приблизится к разгадке проблемы старения.

ГЭБ и болезнь Альцгеймера


Старение мозга и нейродегенеративные заболевания связаны с оксидативным стрессом, нарушением содержания металлов и воспалением, и далеко не последнюю роль в этом играет ГЭБ. Например, рецепторы гликозилированных белков (РГБ) и протеин-1, связанный с рецепторами липопротеина низкой плотности (П1-РЛП), встроенные в структуру ГЭБ, играют основную роль в регуляции обмена бета-амилоида в ЦНС, и изменение активности этих двух рецепторов может способствовать накоплению бета-амилоида в ЦНС с последующим развитием воспаления, нарушением баланса между мозговым кровообращением и метаболизмом, изменением синаптической передачи, повреждением нейронов и отложением амилоида в паренхиме и сосудах головного мозга. А в результате- болезнь Альцгеймера. Накопление аполипопротеина в периваскулярном (околососудистом) пространстве- ключевой момент в развитии этого страшного заболевания, которое распространяется все с большей скоростью и уже поражает лиц моложе 40 лет. О роли аполипопротеина и повреждении астроцитов ГЭБ пишут немецкие авторы под руководством Dr. Dietmar R. Thal из Department of Neuropathology , University of Bonn .
Кроме того, некоторые исследователи считают, что болезнь Альцгеймера может носить и аутоиммунную природу- проникновение церебрального протеина в кровоток через дефицитарный ГЭБ. В сосудистой системе образуются антитела, атакующие мозг при повторном переходе через барьер.

Многие ученые связывают развитие нейродегенеративных заболеваний и поддержание нервных стволовых клеток с активностью ABC transporters- АТФ-связывающих транспортеров. ABCB-семейство этих транспортеров обнаружено в ГЭБ. В недавней статье исследовательской группы под руководством профессора Jens Pahnke из Neurodegeneration Research Laboratory (NRL) , Department of Neurology, University of Rostock обсуждаются накопленные данные. Ученые полагают, что благодаря изучению роли и функционирования ABC transporters можно будет глубже понять патогенез болезни Альцгеймера, создать новые подходы в терапии и математические методы для расчета риска.
В апреле 2008 года в BBC News появилось сообщение Джонатана Гейгера из University of North Dakota о том, что ежедневное употребление одной чашки кофе в день укрепляет гематоэнцефалический барьер, защищая мозг от вредного воздействия холестерина. Исследователи под руководством Джонатана Гейгера кормили кроликов пищей с высоким содержанием холестерина. Кроме того, некоторые животные ежедневно получали воду, содержащую 3 мг кофеина (что эквивалентно одной чашке кофе). Спустя 12 недель, у кроликов, получавших кофеин, гематоэнцефалический барьер оказался значительно прочнее, чем у их собратьев, употреблявших обычную воду, сообщил Гейгер. Гистологическое исследование мозга кроликов показало повышение активности астроцитов – клеток микроглии мозга, а также снижение проницаемости ГЭБ. Новые данные могу помочь в борьбе с болезнью Альцгеймера, при которой происходит повышение уровня холестерина в крови пациентов и, как следствие разрушение ГЭБ, полагают ученые.

Другим средством от болезни Альцгеймера могут стать ионофоры- аналоги 8- гидрокси- хинолина (PBT2), которые действуют на метал-индуцированную агрегацию амилоида. Об этом В 2006 году ученые из Department of Chemical and Biological Engineering , University of Wisconsin-Madison под руководством Eric V. Shusta продемонстрировали способность нервных стволовых клеток эмбрионального мозга крыс стимулировать приобретение клетками кровеносных сосудов свойств гематоэнцефалического барьера .
В работе использовались стволовые клетки мозга, выращиваемые в виде нейросфер. Такие клетки синтезируют факторы, воздействие которых на эндотелиальные клетки, выстилающие внутреннюю поверхность сосудов мозга, заставляет их формировать плотный барьер, не пропускающий малые молекулы, обычно свободно проникающие через сосудистую стенку.
Авторы отмечают, что формирование такого зачаточного гематоэнцефалического барьера происходит даже при полном отсутствии астроцитов – клеток, обеспечивающих поддержание структуры и функционирования структур мозга, в том числе гематоэнцефалического барьера, но появляющихся в больших количествах только после рождения.
Тот факт, что развивающиеся клетки мозга стимулируют превращение эндотелиальных клеток в клетки гематоэнцефалического барьера, не только проливает свет на механизмы, обеспечивающие безопасность мозга. Авторы планируют создать аналогичную модель гематоэнцефалического барьера с использованием человеческих эндотелиальных и нервных стволовых клеток. Если их попытки увенчаются успехом, то в распоряжении исследователей-фармакологов в скором будущем появится функционирующая модель человеческого гематоэнцефалического барьера, помогающая в преодолении препятствий, стоящих на пути нейробиологов, врачей и разработчиков лекарственных средств, пытающихся найти способы доставки в мозг тех или иных препаратов.

В заключение

В заключение хотелось бы сказать, что гематоэнцефалический барьер- удивительная структура, которая защищает наш мозг. Сейчас ведется множество исследований ГЭБ, в основном их ведут фармакологические компании и эти исследования имеют своей целью определение проницаемости ГЭБ для различных веществ, в основном кандидатов на роль лекарств от тех или иных заболеваний. Но этого недостаточно. С проницаемостью ГЭБ связано страшное возраст-ассоциированное заболевание- болезнь Альцгеймера. С проницаемостью ГЭБ связано старение мозга. Старение ГЭБ ведет за собой старение других структур мозга, а метаболические изменения в стареющем мозге ведут за собой изменения функционирования ГЭБ.
Можно выделить несколько задач для исследователей:
1) Определение проницаемости ГЭБ для различных веществ и анализ накопленных экспериментальных данных -необходимо для создания новых лекарств.

2) Исследование возрастных изменений ГЭБ.

3) Изучение возможностей регуляции функционирования ГЭБ.

4) Изучение роли изменений ГЭБ в возникновении нейродегенеративных заболеваний

Сейчас необходимы исследования этих вопросов, потому что болезнь Альцгеймера "молодеет". Может быть, научившись правильно регулировать функциональное состояние ГЭБ, научившись укреплять его, научившись понимать глубинные метаболические процессы в мозге ученые наконец-то найдут средства от возраст-ассоциированных заболеваний мозга и
старения...

Гематоэнцефалический барьер исключительно важен для обеспечения гомеостаза головного мозга, однако многие вопросы, касающиеся его формирования, все еще окончательно не выяснены. Но уже сейчас совершенно ясно, что ГЭБ представляет собой максимально выраженный по дифференцированности, сложности и плотности гистогематический барьер. Основная структурная и функциональная его единица - эндотелиальные клетки капилляров мозга.

Метаболизм мозга, как никакого другого органа, зависит от веществ, поступающих с кровотоком. Многочисленные кровеносные сосуды, обеспечивающие работу нервной системы, отличаются тем, что процесс проникновения веществ через их стенки является избирательным. Эндотелиальные клетки капилляров головного мозга соединены между собой непрерывными плотными контактами, поэтому вещества могут проходить только через сами клетки, но не между ними. К наружной поверхности капилляров прилегают клетки глии - второго компонента гематоэнцефалического барьера. В сосудистых сплетениях желудочков мозга анатомической основой барьера являются эпителиальные клетки, также плотно соединенные между собой. В настоящее время гематоэнцефалический барьер рассматривается не как анатомо-морфологическое, а как функциональное образование, способное избирательно пропускать, а в ряде случаев и доставлять к нервным клеткам с помощью активных механизмов транспорта различные молекулы. Таким образом, барьер выполняет регуляторную и защитную функции

В головном мозге есть структуры, в которых гематоэнцефалический барьер ослаблен. Это, прежде всего, гипоталамус, а также ряд образований на дне 3-го и 4-го желудочков - самое заднее поле (area postrema), субфорникальный и субкомиссуральный органы, а также шишковидное тело. Целостность ГЭБ нарушается при ишемических и воспалительных поражениях мозга.

Гематоэнцефалический барьер считается окончательно сформировавшимся, когда свойства этих клеток будут удовлетворять двум условиям. Во-первых, скорость жидкофазного эндоцитоза (пиноцитоза) в них должна быть крайне низкой. Во-вторых, между клетками должны формироваться специфические плотные контакты, для которых характерно очень высокое электрическое сопротивление. Оно достигает величин 1000-3000 Ом/см 2 для капилляров мягкой мозговой оболочки и от 2000 до 8000 0м/см2 для интрапаренхимальных мозговых капилляров. Для сравнения: средняя величина трансэндотелиального электрического сопротивления капилляров скелетной мышцы составляет всего 20 Ом/см2.

Проницаемость гематоэнцефалического барьера для большинства веществ в значительной степени определяется их свойствами, а также способностью нейронов синтезировать эти вещества самостоятельно. К веществам, которые могут преодолевать этот барьер, относятся, прежде всего, кислород и углекислый газ, а также различные ионы металлов, глюкоза, незаменимые аминокислоты и жирные кислоты, необходимые для нормального функционирования мозга. Транспорт глюкозы и витаминов осуществляется с использованием переносчиков. Вместе с тем D- и L-глюкоза обладают различной скоростью проникновения через барьер - у первой она более чем в 100 раз выше. Глюкоза играет главную роль как в энергетическом обмене мозга, так и в синтезе ряда аминокислот и белков.

Ведущим фактором, определяющим функционирование гематоэнцефалического барьера, является уровень метаболизма нервных клеток.

Обеспечение нейронов необходимыми веществами осуществляется не только с помощью подходящих к ним кровеносных капилляров, но и благодаря отросткам мягкой и паутинной оболочек, по которым циркулирует цереброспинальная жидкость. Цереброспинальная жидкость находится в полости черепа, в желудочках мозга и пространствах между оболочками мозга. У человека ее объем составляет около 100-150 мл. Благодаря цереброспинальной жидкости поддерживается осмотическое равновесие нервных клеток и удаляются продукты метаболизма, токсичные для нервной ткани.

Прохождение веществ через гематоэнцефалический барьер зависит не только от проницаемости для них сосудистой стенки (молекулярной массы, заряда и липофильности вещества), но также и от наличия или отсутствия системы активного транспорта.

Стереоспецифичным инсулиннезависимым транспортером глюкозы (GLUT-1), обеспечивающим перенос этого вещества через гематоэнцефалический барьер, богаты эндотелиальные клетки капилляров мозга. Активность данного транспортера может обеспечить доставку глюкозы в количестве, в 2-3 раза превышающем то, которое требуется мозгу в нормальных условиях.

Характеристика транспортных систем гематоэнцефалического барьера (по: Pardridge, Oldendorf, 1977)

Транспортируемые
соединения

Преимущественный субстрат

Vmax
нмоль/мин*г

Монокарбоновые
кислоты

Нейтральные
аминокислоты

Фенилаланин

Основные
аминокислоты

Нуклеозиды

Аденозин

У детей с нарушением функционирования этого транспортера отмечается значительное снижение уровня глюкозы в цереброспинальной жидкости и нарушения в развитии и работе мозга.

Монокарбоновые кислоты (L-лактат, ацетат, пируват), а также кетоновые тела транспортируются отдельными стереоспецифичными системами. Хотя интенсивность их транспорта ниже, чем транспорта глюкозы, они являются важным метаболическим субстратом у новорожденных и при голодании.

Транспорт холина в центральную нервную систему также опосредуется переносчиком и может регулироваться скоростью синтеза ацетилхолина в нервной системе.

Витамины мозгом не синтезируются и поставляются из крови с помощью специальных транспортных систем. Несмотря на то что эти системы обладают сравнительно низкой транспортной активностью, в нормальных условиях они могут обеспечивать транспорт необходимого для мозга количества витаминов, однако их дефицит в пище способен приводить к неврологическим расстройствам. Некоторые белки плазмы также могут проникать через гематоэнцефалический барьер. Одним из способов их проникновения является трансцитоз, опосредованный рецепторами. Именно так проникают через барьер инсулин, трансферрин, вазопрессин и инсулинподобный фактор роста. Эндотелиальные клетки капилляров мозга имеют специфические рецепторы к этим белкам и способны осуществлять эндоцитоз белок-рецепторного комплекса. Важно, что в результате последующих событий комплекс распадается, интактный белок может выделяться на противоположной стороне клетки, а рецептор вновь встраиваться в мембрану. Для поликатионных белков и лектинов способом проникновения через ГЭБ также является трансцитоз, однако он не связан с работой специфических рецепторов.

Многие нейромедиаторы, присутствующие в крови, не способны проникать через ГЭБ. Так, дофамин не обладает этой способностью, в то время как L-ДОФА проникает через ГЭБ с помощью системы транспорта нейтральных аминокислот. Кроме того, клетки капилляров содержат ферменты, метаболизирующие нейромедиаторы (холинестераза, ГАМК-трансаминаза, аминопептидазы и др.), лекарственные и токсические вещества, что обеспечивает защиту мозга не только от циркулирующих в крови нейромедиаторов, но и от токсинов.

В работе ГЭБ участвуют также белки-переносчики, осуществляющие транспорт веществ из эндотелиальных клеток капилляров головного мозга в кровь, препятствуя их проникновению в мозг, например b-гликопротеид.

В ходе онтогенеза скорость транспорта различных веществ через ГЭБ существенно изменяется. Так, скорость транспорта b-гидроксибутирата, триптофана, аденина, холина, а также глюкозы у новорожденных существенно выше, чем у взрослых. Это отражает относительно более высокую потребность развивающегося мозга в энергии и макромолекулярных субстратах.