Кровообращение в нашем организме обусловлено работой сердца, которое обеспечивает постоянный приток крови ко всем частям организма через кровеносные сосуды

Что такое кровообращение?

Кровообращение в нашем организме обусловлено работой сердца, которое обеспечивает постоянный приток крови ко всем частям организма через кровеносные сосуды. Этот процесс обеспечивает транспорт кислорода и питательных веществ к каждой клетке, а также удаление отходов метаболизма из организма. Хорошее кровообращение имеет важное значение для здоровья: позволяет сохранить метаболизм клеток на адекватном уровне, поддерживает уровень рН организма, осмотическое давление, стабилизирует температуру тела и защищает от микробного и механического повреждения. Проблемы начинаются, когда поток крови к определенным частям тела ухудшается. Хотя это может повлиять на любую часть вашего тела, как правило, люди замечают нарушение кровообращения в пальцах ног или рук.

Что влияет на кровообращение?

На кровообращение влияют несколько факторов. Один из них является естественный процесс старения. По мере старения организма артерии теряют свою эластичность и становятся меньше, в результате этого происходит снижение кровотока в организме и повышается артериальное давление крови. Другими распространенными причинами плохого кровообращения являются избыточная масса тела (способствует отечности нижней части ног и ступней), курение и образование атеросклеротических бляшек на внутренней стороне кровеносных сосудов и капилляров, что может привести к высокому давлению крови, проблемам с сердцем и др. Другими причинами плохого кровообращения являются: отсутствие физических упражнений, употребление нездоровой пищи (что приводит к избыточной массе тела), слишком долгая работа за компьютером в течение многих лет (особенно, если вы не делаете регулярные перерывы).

Какие методы способствуют улучшению кровообращения в организме?

Некоторые методы и изменения в образе жизни способствуют улучшению кровообращения.

Упражнения необходимы для всех

Все люди должны регулярно выполнять физические упражнения, независимо от состояния здоровья. Вы можете ходить, ездить на велосипеде, бегать, плавать или заниматься любым другим видом спорта. Если кровообращение нарушено, а состояние здоровья не самое лучшее, нужно начинать выполнять легкие упражнения, а затем постепенно переходить к более сложным.

Обязательно каждый час делайте разминания и легкие упражнения в течение 3-5 минут. Это особенно важно для людей, которые ведут сидячий образ жизни и мало двигаются. Вы можете делать маленькие круги руками, касаться руками пальцев ног или просто походить в течение нескольких минут. Очень важно не находиться слишком долго в одном положении и делать регулярные перерывы. Поднимание ног – простой способ для улучшения кровообращения. Поднимание ног выше уровня сердца является хорошим способом для улучшения кровообращения и расслабления.

Массаж также способствует улучшению кровообращения

Массаж, как и упражнения, способствует улучшению кровообращения, поскольку стимулирует приток крови к массируемой области. Определенные участки тела периодически могут становиться жесткими и напряженными, а, возможно, даже воспаленными. Если вы будете массажировать эти мышцы, то будут высвобождаться образующиеся в организме природные токсины, что способствует улучшению кровообращения. Вы можете добавить к массажному маслу эфирное масло розмарина, которое улучшает циркуляцию крови. Другими эфирными маслами, которые способствуют улучшению кровообращения, являются кипарисовое, имбирное и мятное.

Здоровое питание необходимо для улучшения кровообращения

Ешьте здоровую пищу и избегайте употребления нездоровых продуктов. Ешьте фрукты, овощи, цельные зерна, нежирные белки и здоровые жиры (содержатся в рыбьем жире, оливковом масле, орехах и семенах). Избегайте употребления переработанных продуктов питания, а также богатых сахаром или солью, вредными жирами (насыщенными и транс-жирами) продуктов. Такие продукты, как кайенский перец, чеснок и имбирь, повышают температуру тела, что увеличивает приток крови.

Пейте достаточно воды, снизьте употребление кофеина и алкоголя. Насыщение организма водой имеет важное значение для адекватного функционирования всех органов. Когда вы пьете достаточно воды, в крови повышается уровень кислорода, что приводит не только к улучшению кровообращения, но и общего состояния здоровья. Большинство экспертов рекомендуют употреблять 8-12 стаканов воды в день.

Гинко билоба – растительное средство для улучшения кровообращения

Есть также ряд лекарственных трав, которые способствуют улучшению кровообращения (См. статью: ). Кроме того, здоровому кровообращению способствуют такие продукты, как кайенский перец, чеснок, имбирь, гинкго билоба. Это универсальный средства, которые усиливают память и улучшают кровообращение. Лабораторные исследования показали, что гинкго билоба улучшает кровообращение, «открывает» кровеносные сосуды и делает кровь менее густой. Гинкго доступен в виде жидкого экстракта, таблеток, капсул или сушеных листьев для чая. Эффект от применения гинкго билоба заметен уже через 4-6 недель. Если вы принимаете лекарства для улучшения кровообращения, обязательно проконсультируйтесь с врачом прежде, чем принимать дополнительно любое другое средство.

Контрастный душ и ванна способствуют улучшению кровообращения

Принимайте горячую ванну или горячий душ. Вы можете добавить английскую соль в ванну. Эта лечебная ванна позволит расслабиться в течение 20-30 минут. Горячая вода помогает расслабить напряженные мышцы и улучшает кровообращение. Вы также можете использовать скраб для тела, чтобы стимулировать кровообращение. Также хорошо посещать парную или сауну, которые открывают носовые проходы. Облегченное дыхание способствует поступлению кислорода и улучшению кровообращения.

Также эффективен контрастный душ – чередование воздействия холодной и теплой водой на пораженные участки тела. Вы также можете чередовать каждые 30 секунд горячий и холодный компресс; принимать две ножные ванны одновременно (с горячей и холодной водой).

Сочетание приведенных в статье методов способствует заметному улучшению кровообращения. Если у вас уже имеются характерные симптомы плохого кровообращения, обязательно бросьте курить. Курение вредно для вашего здоровья, а никотин является одной из ведущих причин плохого кровообращения. Также нужно научиться управлять стрессом. Со временем стресс может оказать негативное воздействие на кровообращение в организме. Лучшими методами снятия стресса являются: регулярное выполнение физических упражнений, хорошая музыка, дыхательные упражнения, медитация или психотерапии. Помните, что хорошее кровообращение оказывает воздействие на весь организм и даже влияет на умственные способности, поэтому старайтесь вести здоровый образ жизни и рационально питаться.

Принцип движения крови . Третий принцип гидродинамики, применяемый для кровотока, отражает закон сохранения энергии и выражается в том, что энергия определённого объема текущей жидкости, составляющей постоянную величину, складывается из: а) потенциальной энергии (гидростатическое давление), представляющей массу столба крови; б) потенциальной энергии (статическое давление) при давлении на стенку; в) кинетической энергии (динамическое давление) движущегося потока крови после сердечного выброса. Сложение всех видов энергии даёт общее давление и является постоянной величиной. Следовательно, учитывая закон сохранения энергии, мы видим, что при сужении кровеносного сосуда скорость кровотока возрастает, а потенциальная энергия уменьшается. При этом напряжение стенки весьма незначительно. И, наоборот, при замедлении кровотока в расширенных сосудах (синусоиды) уменьшается энергия движущегося потока и возрастает потенциальная энергия (давление на стенку сосуда).

Регуляция деятельности сердечно-сосудистой системы . Нейрогуморальная саморегуляция . В артериальной системе поддерживается постоянное давление; оно может лишь временно изменяться в связи с изменением функционального состояния человека (трудовые процессы, спортивные упражнения, сон). Поддержание постоянства уровня кровяного давления в артериях обеспечивается механизмами саморегуляции. В стенке дуги аорты и каротидного синуса (область разветвления общей сонной артерии на внутреннюю и наружную) расположены прессорецепторы, т. е. рецепторы, чувствительные к изменениям давления. При каждой систоле сердца давление крови в артериях повышается, а во время диастолы и оттока крови на периферию снижается. Пульсовые колебания давления возбуждают прессорецепторы, и по чувствительным (афферентным) волокнам возникающие в них залпы импульсов проводятся в центральную нервную систему к центрам торможения сердца и сосудодвигательному центру, поддерживая в них постоянное состояние возбуждения, называемое тонусом центров.

При повышении давления в аорте и сонной артерии импульсы учащаются, может возникнуть непрерывная, так называемая угрожающая, импульсация, которая повышает тонус центра блуждающего нерва и тормозит сосудосуживающий центр. От центра торможения сердца импульсы по блуждающим нервам идут к сердцу и тормозят его деятельность. Торможение сосудосуживающего центра приводит к снижению тонуса сосудов и они расширяются. Кровяное давление достигает начального уровня - нормализуется. Таким образом, при участии механизма саморегуляции у животных и человека постоянно поддерживается нормальный уровень кровяного давления, который обеспечивает необходимое кровоснабжение тканей.

Гуморальная регуляция . Изменение содержания различных веществ в крови так же влияет на сердечно-сосудистую систему. Так, на работе сердца отражается изменение в крови уровня калия и кальция. Повышение содержания кальция увеличивает частоту и силу сокращений, повышает возбудимость и проводимость сердца. Калий действует противоположно. Во время эмоциональных состояний: гнева, страха, радости - в кровь из надпочечников поступает адреналин. Он оказывает на сердечно-сосудистую систему такое же действие, как раздражение симпатических нервов: усиливает работу сердца и суживает сосуды, давление при этом повышается. Так же действует гормон щитовидной железы тироксин. Гормон гипофиза вазопрессин суживает артериолы. В настоящее время установлено, что во многих тканях образуются сосудорасширяющие вещества. К сосудосуживающим веществам относятся адреналин, норадреналин, вазопрессин (гормон задней доли гипофиза), серотонин (образующийся в головном мозге и слизистой оболочке кишечника). Расширение сосудов вызывают метаболиты - угольная и молочная кислоты и медиатор ацетилхолин. Расширяет артериолы и увеличивает наполнение капилляров гистамин, образующийся в стенках желудка и кишечника, в коже при её раздражении, в работающих мышцах.

Кровяное давление . Непременным условием движения крови по системе кровеносных сосудов является разность давления крови в артериях и венах, которая создаётся и поддерживается сердцем. При каждой систоле сердца в артерии нагнетается определенный объём крови. Благодаря большому сопротивлению в артериолах и капиллярах до следующей систолы только часть крови успевает перейти в вены и давление в артериях не падает до нуля.

Артерии . Очевидно, уровень давления в артериях должен определяться величиной систолического объёма сердца и показателем сопротивления в периферических сосудах: чем с большей силой сокращается сердце и чем больше сужены артериолы и капилляры, тем выше кровяное давление. Кроме этих двух факторов: работы сердца и периферического сопротивления, на величину кровяного давления влияют объём циркулирующей крови и её вязкость.

Как известно, сильное кровотечение, а именно потеря до 1/3 крови, ведёт к смерти от невозврата крови к сердцу. Вязкость крови возрастает при изнурительном поносе или сильном потоотделении. При этом увеличивается периферическое сопротивление и для продвижения крови необходимо более высокое давление. Работа сердца усиливается, кровяное давление растет.

В нормальных условиях стенки артерий растянуты и находятся в состоянии эластического напряжения. Когда во время систолы сердце выбрасывает кровь в артерии, то только часть энергии сердца тратится на продвижение крови, значительная часть переходит в энергию эластического напряжения стенок артерий. Во время диастолы растянутые эластические стенки аорты и крупных артерий оказывают давление на кровь и поэтому течение крови не прекращается.

В артериальной системе в связи с ритмической работой сердца кровяное давление периодически колеблется: повышается во время систолы желудочков и снижается во время диастолы, по мере оттекания крови на периферию. Наивысшее давление, наблюдающееся во время систолы, называют максимальным, или систолическим, давлением. Наименьшее давление во время диастолы называют минимальным, или диастолическим. Величина давления зависит от возраста. У детей стенки артерий отличаются большей эластичностью, поэтому давление у них ниже, чем у взрослых. У здоровых взрослых людей максимальное давление в норме 110-120 мм рт. ст., а минимальное 70-80 мм рт. ст. К старости, когда эластичность сосудистых стенок следствие склеротических изменений уменьшается, уровень кровяного давления повышается.

Разность между максимальным и минимальным давлением называют пульсовым давлением. Оно равно 40-50 мм рт. ст.

Величина кровяного давления служит важной характеристикой деятельности сердечно-сосудистой системы.

Капилляры . Благодаря тому, что кровь в капиллярах находится под давлением, в артериальной части капилляров вода и растворённые в ней вещества фильтруются в межтканевую жидкость. В венозном его конце, где давление крови уменьшается, осмотическое давление белков плазмы засасывает межтканевую жидкость обратно в капилляры. Таким образом, ток воды и веществ, растворенных в ней, в начальной части капилляра идёт наружу, а в конечной его части - внутрь. Кроме процессов фильтрации и осмоса, в обмене участвует и процесс диффузии, т. е. движение молекул от среды с высокой концентрацией в среду, где концентрация ниже. Глюкоза, аминокислоты диффундируют из крови в ткани, а аммиак, мочевина - в обратном направлении. Однако стенка капилляра живая полупроницаемая мембрана. Движение частиц через неё нельзя объяснить только процессами фильтрации, осмоса, диффузии.

Проницаемость стенки капилляра различна в разных органах и избирательна, т. е. через стенку проходят одни вещества и задерживаются другие. Медленный ток крови в капиллярах (0,5 мм/с) способствует протеканию в них процессов обмена.

Вены в отличие от артерий имеют тонкие стенки со слабо развитой мышечной оболочкой и малым количеством эластической ткани. Вследствие этого они легко растягиваются и легко сдавливаются. В вертикальном положении тела возврату крови к сердцу препятствует сила тяжести, поэтому движение крови по венам в известной степени затруднено. Для него недостаточно одного давления, создаваемого сердцем. Остаточное кровяное давление даже в начале вен - в венулах составляет всего 10-15 мм рт. ст.

В основном три фактора способствуют движению крови по венам: наличие клапанов вен, сокращения близлежащих скелетных мышц и отрицательное давление в грудной полости.

Клапаны имеются преимущественно в венах конечностей. Они расположены так, что пропускают кровь к сердцу и препятствуют движению её в обратном направлении. Сокращающиеся скелетные мышцы надавливают на податливые стенки вен и продвигают кровь к сердцу. Поэтому движения способствуют венозному оттоку, усиливая его, а длительное стояние вызывает застой крови в венах и расширение последних. В грудной полости давление ниже атмосферного, т. е. отрицательное, а в брюшной полости положительное. Эта разность давления обусловливает присасывающее действие грудной клетки, что также способствует движению крови по венам.

Давление в артериолах, капиллярах и венах . По мере продвижения крови по кровяному руслу давление снижается. Энергия, создаваемая сердцем, расходуется на преодоление сопротивления току крови, возникающего в силу трения частиц крови о стенку сосуда и друг о друга. Различные отделы кровяного русла оказывают неодинаковое сопротивление току крови, поэтому снижение давления происходит неравномерно. Чем больше сопротивление данного участка, тем более резко в нём падает уровень давления. Участками с наибольшим сопротивлением являются артериолы и капилляры: 85% энергии сердца расходуется на продвижение крови по артериолам и капиллярам и только 15% - на продвижение её по крупным и средним артериям и венам. Давление в аорте и крупных сосудах равно 110-120 мм рт. ст., в артериолах - 60-70, в начале капилляра, в его артериальном конце, - 30, а в венозном конце - 15 мм рт. ст. В венах давление снижается постепенно. В венах конечностей оно составляет 5-8 мм рт. ст., а в крупных венах вблизи сердца может быть даже отрицательным, т. е. на несколько миллиметров ртутного столба ниже атмосферного.

Кривая распределения давления крови в сосудистой системе . 1 - аорта; 2, 3 - крупные и средние артерии; 4, 5 - конечные артерии и артериолы; 6 - капилляры; 7 - венулы; 8-11 - конечные, средние, крупные и полые вены

Измерение кровяного давления . Величину артериального давления можно измерить двумя методами - прямым и непрямым. При измерении прямым, или кровавым, способом в центральный конец артерии ввязывают стеклянную канюлю или вводят полую иглу, которую резиновой трубочкой соединяют с измерительным прибором, например ртутным манометром. Прямым способом давление у человека регистрируют во время больших операций, например на сердце, когда необходимо непрерывно следить за уровнем давления.

Для определения давления непрямым, или косвенным, методом находят то внешнее давление, которое достаточно, чтобы пережать артерию. В медицинской практике обычно измеряют артериальное давление в плечевой артерии непрямым звуковым методом Короткова при помощи ртутного сфигмоманометра Рива-Роччи или пружинного тонометра. На плечо накладывают полую резиновую манжетку, которая соединена с нагнетательной резиновой грушей и манометром, показывающим давление в манжетке. При нагнетании воздуха в манжетку она давит на ткани плеча и сжимает плечевую артерию, а манометр показывает величину этого давления. Сосудистые тоны выслушивают фонендоскопом над локтевой артерией, ниже манжетки. Н. С. Коротков установил, что в несдавленной артерии звуки при движении крови отсутствуют. Если поднять давление выше уровня систолического, то манжетка полностью пережмёт просвет артерии и кровоток в ней прекратится. Звуки при этом также отсутствуют. Если теперь постепенно выпускать воздух из манжетки и снижать в ней давление, то в момент, когда оно станет чуть ниже систолического, кровь при систоле с большой силой прорвётся через сдавленный участок и ниже манжетки в локтевой артерии будет слышен сосудистый тон. То давление в манжетке, при котором появляются первые сосудистые тоны, соответствует максимальному, или систолическому, давлению. При дальнейшем выпускании воздуха из манжетки, т. е. снижении в ней давления, тоны усиливаются, а затем или резко ослабляются, или исчезают. Этот момент соответствует диастолическому давлению.

Пульс . Пульсом называют ритмические колебания диаметра артериальных сосудов, возникающие при работе сердца. В момент изгнания крови из сердца давление в аорте повышается, и волна повышенного давления распространяется вдоль артерий до капилляров. Легко прощупать пульсацию артерий, которые лежат на кости (лучевая, поверхностная височная, тыльная артерия стопы и др.). Чаще всего исследуют пульс на лучевой артерии. Прощупывая и подсчитывая пульс, можно определить частоту сердечных сокращений, их силу, а также степень эластичности сосудов. Опытный врач, надавливая на артерию до полного прекращения пульсации, может довольно точно определить высоту кровяного давления. У здорового человека пульс ритмичен, т.е. удары следуют через равные промежутки времени. При заболеваниях сердца могут наблюдаться нарушения ритма - аритмия. Кроме того учитывают также такие характеристики пульса как напряжение (величина давления в сосудах), наполнение (количество крови в русле).

В крупных венах вблизи сердца также можно наблюдать пульсацию. Происхождение венного пульса диаметрально противоположно возникновению артериального пульса. Отток крови из вен в сердце прекращается во время систолы предсердий и во время систолы желудочков. Эти периодические задержки оттока крови вызывают переполнение вен, растяжение их тонких стенок и обусловливает их пульсацию. Венный пульс исследуют в надключичной ямке.

Микроциркуляторным руслом является комплекс микрососудов, составляющих обменно-транспортную систему. К нему относятся артериолы, прекапиллярные артериолы, капилляры, посткапиллярные венулы, венулы и артериовенозные анастомозы. Артериолы постепенно уменьшаются в диаметре и переходят в прекапиллярные артериолы. Первые имеют диаметр 20-40 мкм, вторые 12-15 мкм. В стенке артериол имеется хорошо выраженный слой гладкомышечных клеток. Их основной функцией является регуляция капиллярного кровотока. Уменьшение диаметра артериол всего на 5% приводит к возрастанию периферического сопротивления кровотоку на 20 %. Кроме того, артериолы образуют гемодинамический барьер, который необходим для замедления кровотока.

Капилляры являются центральным звеном микроциркуляторного русла. Диаметр капилляров в среднем 7-8 мкм. Их стенка образована одним слоем эндотелиоцитов. В отдельных участках имеются отросчатые перициты. По строению капилляры делятся на три типа:

1. Капилляры соматического типа (сплошные). Их стенка состоит из непрерывного слоя эндотелиоцитов. Она легко проницаема для воды и растворенных в ней ионов и низкомолекулярных веществ и непроницаема для белковых молекул. Такие капилляры находятся в коже, скелетных мышцах, легких, миокарде, мозге.

2. Капилляры висцерального типа (окончатые). Имеют в эндотелии фенестры (оконца). Этот тип капилляров обнаружен в органах, которые служат для выделения и всасывания больших количеств воды с растворенными в ней веществами. Это пищеварительные и эндокринные железы, кишечник, почки.

3. Капилляры синусоидного типа (не сплошные). Находятся в костном мозге, печени, селезенке. Их эндотелиоциты отделены друг от друга щелями. Поэтому стенка этих капилляров проницаема не только для белков плазмы, но и для клеток крови.

У некоторых капилляров в местах ответвления от артериол находится капиллярный сфинктер. Он состоит из 1-2 гладкомышечных клеток, образующих кольцо на устье капилляра. Они служат для регуляции местного капиллярного кровотока.



Основной функцией капилляров является транскапиллярный обмен, обеспечивающий вводно-солевой, газовый обмен и метаболизм клеток. Общая обменная капилляров составляет около 1000 м. Однако количество капилляров в органах и тканях неодинаково. Например, в 1 мм3 мозга, печени, миокарда – около 2500-3000 капилляров. В скелетных мышцах от 300 до 1000.

Обмен осуществляется путем диффузии, фильтрации-абсорбции и микропиноцитоза. Наибольшую роль в транскапилярном обмене воды и растворенных в ней веществ играет двухсторонняя диффузия. Ее скорость составляет около 60 литров в минуту. С помощью диффузии обмениваются молекулы воды, неорганические ионы, кислород, углекислый газ, алкоголь и глюкоза. Диффузия происходит через заполненные водой поры. Фильтрация и абсорбция связаны с разностью гидростатического и онкотического давления крови и тканевой жидкости. В артериальном конце капилляров гидростатическое давление составляет 25-30 м рт ст., а онкотическое давление белков плазмы 20-25 мм рт ст., т.е. возникает положительная разность давления около +5 мм рт ст. Гидростатическое давление тканевой жидкости около нуля, а онкотическое – около 3 мм рт ст. Разность – 3 мм рт ст. Суммарный градиент давления направлен из капилляров. Поэтому вода с растворенными веществами переходит в межклеточное пространство. Гидростатическое давление в венозном конце капилляров 8-12 мм рт ст. Поэтому разность онкотического и гидростатического давления составляет – 10-15 мм рт ст. при той же разности в тканевой жидкости. Направление градиента в капилляры. Вода абсорбируется в них. Возможен транскапиллярный обмен против концентрационных градиентов. В эндотелиоцитах имеются везикулы, распространение в цитоплазме и фиксированные в клеточной мембране. В каждой клетке около 500 таких везикул. С их помощью происходит транспорт из капилляров в тканевую жидкость и наоборот крупных молекул, например, белков. Этот механизм требует затрат энергии, поэтому сносится к активному транспорту.

В состоянии покоя кровь циркулирует лишь по 25-30% всех капилляров. Их называют дежурными. При изменении функционального состояния организма количество функциональных капилляров возрастает. Например, в работающих скелетных мышцах оно увеличивается в 50-60 раз. В результате обменная поверхность капилляров возрастает в 50-100 раз. Возникает рабочая гиперемия. Наиболее выраженная рабочая гиперемия наблюдается в мозге, сердце, печени, почках. Значительно возрастает количество функционирующих капилляров и после временного прекращения кровообращения в них. Например, после временного сдавливания артерий. Такое явление называется реактивной (постокклюзионной) гиперемией.

Кроме того, капилляры имеют ауторегуляторную реакцию. Это поддержание постоянства кровотока в капиллярах при снижении или повышении системного артериального давления. Такая реакция связана с тем, что при повышении давления гладкие мышцы сосудов сокращаются и их просвет уменьшается. При понижении наблюдается обратная картина.

Регуляция кровотока в микроциркуляторном русле осуществляется с помощью местных, гуморальных и нервных механизмов, влияющих на просвет артериол.

К местным относятся факторы, оказывающие влияние на мускулатуру артериол. Эти факторы также называются метаболическими, т.к. необходимы для клеточного метаболизма. При недостатке в тканях кислорода, повышении концентрации углекислого газа, протонов, под влиянием АТФ, АДФ, АМФ происходит расширение сосудов. С этими метаболическими сдвигами связана реактивная гиперемия.

Гуморальное явление на сосуды микроциркуляторного русла оказывает ряд веществ. Гистамин вызывает местное расширение артериол и венул. Адреналин, в зависимости от характера рецепторного аппарата гладкомышечных клеток, может вызывать и сужение, и расширение сосудов. Брадикинин, образующийся из белков плазмы кининогенов под влиянием фермента калликреина, также расширяет сосуды. Оказывают влияние на артериолы расслабляющие факторы эндотелиоцитов. К ним относятся окись азота, белок эндотелин и некоторые другие вещества.

Симпатические вазоконстрикторы иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек, органов брюшной полости. Они обеспечивают регуляцию тонуса этих сосудов. Мелкие сосуды наружных половых органов, твердой мозговой оболочки, желез пищеварительного тракта иннервируются сосудорасширяющими парасимпатическими нервами.

Интенсивность транскапиллярного обмена главным образом определяется количеством функционирующих капилляров. Проницаемость капиллярной сети повышает гистамин и брадикинин.

Билет 17 9. Механизм мышечного сокращения. Теория скольжения. Мышцы состоят из мышечных волокон, а те - из множества тонких нитей - миофибрилл, расположенных продольно. Каждая миофибрилла состоит из нитей сократительных белков актина и миозина. Перегородки, называемые Z-пластинами, разделяют миофибриллы на участки - саркомеры, В саркомере чередуются поперечные светлые и темные полосы. Поперечная исчерченность миофибрилл обусловлена определенным расположением нитей актина и миозина. В центральной части каждого саркомера расположены толстые нити миозина. На обоих концах саркомера находятся тонкие нити актина, прикрепленные к Z-пластинам. Нити миозина выглядят в световом микроскопе как светлая полоска (Н-зона) в темном диске, который содержит нити ми- озина и актина и называется анизотропным, или А-диском, По обе стороны от А-диска находятся участки, которые содержат только тонкие нити актина и кажутся светлыми, они называются изотропными, или j-дисками. По их середине проходит темная линия - Z-мембрана, Благодаря такому периодическому чередованию светлых и темных дисков сердечная и скелетная мышцы выглядят поперечно-полосатыми, В состоянии покоя концы толстых и тонких нитей лишь незначительно перекрываются на уровне А-диска. При сокращении тонкие актиновые нити скользят вдоль толстых миозиновых нитей, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити своей длины не изменяют. Миозииовые нити имеют поперечные мостики (выступы) с головками, которые отходят от нити биполярно. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина. Во многих местах участки поверхностной мембраны мышечной клетки углубляются в виде трубочек внутрь волокна, образуя систему Т-систему. Параллельно миофибриллам и перпендикулярно Т-системе, располагается система продольных трубочек (альфа-система). Пузырьки на концах этих трубочек, в которых сосредоточено основное количество внутриклеточного кальция, подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады, В состоянии покоя миозиновый мостик заряжен энергией (миозин фосфорилирован), но он не может соединиться с нитью актина, так как между ними находится система из нитей тропомиозина и молекул тропонина. При возбуждении ПД распространяется по мембранам Т-системы внутрь клетки и вызывает высвобождение ионов кальция из альфа-системы. С появлением ионов кальция в присутствии АТФ происходит изменение пространственного положения тропонииа - нить тропомиозина сдвигается и открываются участки актина, присоединяющие миозиновые головки. Соединение головки фосфорилированного миозина с актином приводит к изменению положения мостика (его «сгибанию»), в результате нити актина перемещаются на 1 мм к середине саркомера. Затем происходит отсоединение мостика от актина. Ритмические прикрепления и отсоединения головок миозина тянут ахтииовую нить к середине саркомера. При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из межфибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина. Вследствие чего тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Затем происходит фосфорилирование миозина за счет АТФ, что также способствует временному разобщению нитей. Расслабление мышцы после ее сокращения происходит пассивно - актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон, а также сокращения мышц-антагонистов. 39.Анализ цикла сердечной деятельности. Основные показатели работы сердца. Минутный и систолический объем кровотока. Нормальные показатели у человека в условиях физиологического покоя и деятельности Сокращение камер сердца называется систолой, расслабление – диастолой. В норме частота сердечных сокращений 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии сердца и клинике для его описания используется классическая схема Уиггерса. Она делит цикл сердечной деятельности на периоды и фазы. Длительность цикла, при частоте 75 ударов в мин., составляет 0,8 сек.Длительность систолы желудочков равна 0,33с. Она включает 2 периода: период напряжения, продолжительностью 0,08 сек. и период изгнания – 0,25 сек. Период напряжения делится на две фазы: фазу асинхронного сокращения, длительностью 0,05 сек и фазу изометрического сокращения 0,03 сек. В фазе асинхронного сокращения происходит неодновременное, т.е. асинхронное сокращение волокон миокарда межжелудочковой перегородки. Затем сокращение синхронизируется и охватывает весь миокард. Давление в желудочках нарастает, и атриовентрикулярные клапаны закрываются. Однако его величина недостаточна для открывания полулунных клапанов. Начинается фаза изометрического сокращения, т.е. во время нее мышечные волокна не укорачиваются, но сила их сокращений и давление в полостях желудочков нарастает. Когда оно достигает 120-130 мм рт ст. в левом и 25-30 мм рт ст. в правом, открываются полулунные клапаны – аортальный и пульмональный. Начинается период изгнания. Он длится 0,25 сек и включает фазу быстрого и медленного изгнания. Фаза быстрого изгнания продолжается 0,12 сек., медленного – 0,13 сек. Во время фазы быстрого изгнания давление в желудочках значительно выше, чем в соответствующих сосудах, поэтому кровь из них выходит быстро. Но так как давление в сосудах нарастает, выход крови замедляется. После того, как кровь из желудочков изгоняется, начинается диастола желудочков. ЕЕ продолжительность 0,47 сек. Она включает протодиастолический период, период изометрического расслабления, период наполнения и пресистолический период. Длительность протодиастолического периода 0,04 сек. Во время него начинается расслабление миокарда желудочков. Давление в них становится ниже, чем в аорте и легочной артерии, поэтому полулунные клапаны закрываются. После этого начинается период изометрического расслабления. Его продолжительность 0,08 сек. В этот период все клапаны закрыты, и расслабление происходит без изменения длины волокон миокарда. Давление в желудочках продолжает снижаться. Когда оно уменьшается до 0, т.е. становится ниже, чем в предсердиях, открываются атриовентрикулярные клапаны. Начинается период наполнения, длительность 0,25 сек. Он включает фазу быстрого наполнения, продолжительность которой 0,08 сек., и фазу медленного наполнения – 0,17 сек. После того, как желудочки пассивно заполнились кровью, начинается пресистолический период, во время которого происходит систола предсердий. Его длительность 0,1 сек. В этот период в желудочки закачивается дополнительное количество крови. Давление в предсердиях, в период их систолы, составляет в левом 8-15 мм рт ст., а правом 3-8 мм рт ст. Отрезок времени от начала протодиастолического периода и до пресистолического, т.е. систолы предсердий, называется общей паузой. Ее продолжительность 0,4 сек. В момент общей паузы полулунные клапаны закрыты, а атриовентрикулярные открываются. Первоначально предсердия, а затем желудочки заполняются кровью. Во время общей паузы происходит пополнение энергетических запасов кардиомиоцитов, выведение из них продуктов обмена, ионов кальция и натрия, насыщение кислородом. Чем короче общая пауза, тем хуже условия работы сердца. Давление в полостях сердца в эксперименте измеряются путем пунктирования, а клинике – их катетеризацией. Одним из важнейших показателей работы сердца является минутный объем кровообращения (МОК) - количество крови, выбрасываемое желудочками сердца в минуту. МОК левого и правого желудочков одинаков. Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл. СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. Частота сердечных сокращений - это количество сокращений сердца в минуту. Его величина равна в среднем 70 ударов в мин.

Билет 18

10.Светопреломляющие среды глаза. Рефракция, ее аномалии и коррекция. Понятие об остроте зрения. Механизмы аккомодации глаза.

Светопреломляющими средами глазного яблока являются хрусталик и содержимое передней, задней и стекловидной камер глаза .

Хрусталик (lens) представляет собой прозрачное эластическое тело в форме двояковыпуклой чечевицы, подвешенное при помощи связочного аппарата - цинновой связки. Особенность хрусталика состоит в его способности при ослаблении натяжения волокон цинновой связки менять свою форму, становиться более выпуклым за счет чего и осуществляется акт аккомодации.

Полость глазного яблока содержит водянистую влагу, хрусталик с его подвешивающим аппаратом и стекловидным шелом.Пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и хрусталика, называется передней камерой глаза, заполненой прозрачной водянистой влагой.Угол передней камеры играет важную роль в процессах циркуляции внутриглазной жидкости и выступает в качестве «фильтра», через который уходит из глаза камерная жидкость.Пространство, ограниченное задней поверхностью радужки,периферической частью хрусталика и внутренней поверхностьюресничного тела, называется задней камерой глаза, также заполненной водянистой влагой. Камерная влага является источникомпитания тканей, не содержащих сосуды (роговица, хрусталик истекловидное тело).

От количества водянистой влаги зависит внутриглазное давление, равное 20 мм рт.ст. Повышение его может привести к нарушению кровообращения в глазном яблоке. Водянистая влага -это ультрафильтрат безбелковой плазмы, проходящей через эндотелиальную стенку капилляров ресничного тела. Ее образование зависит от кровенаполнения сосудов глаза.

Водянистая влага оттекает через зрачок в переднюю камеру глаза и в ее передний угол (фильтрующая зона), а затем через венозный синус склеры поступает в передние ресничные вены. При затруднении оттока влаги повышается внутриглазное давление (глаукома). Для снижения внутриглазного давления в конъюктивальный мешок закапывают М-холиномиметики (пилокарпин), которые вызывают сужение зрачка, расширение пространства угла передней камеры (радужно-роговичного) и усиление оттока влаги через венозный синус склеры. Поэтому при подозрении на глаукому необходимо избегать препаратов, расширяющих зрачок, например, М-холинолитика - атропина.

При нормальной рефракции параллельные лучи от далеко расположенных предметов собираются на сетчатке в центральной ямке, такой глаз называется эмметрошческим. К нарушениям рефракции относится миопия, или близорукость, когда параллельные лучи фокусируются не на сетчатке, а впереди нее. Это возникает при чрезмерно большой длине глазного яблока или преломляющей силе глаза. Близкие предметы близорукий видит хорошо, а удаленные - расплывчато. Коррекция миопии - использование рассеивающих двояковогнутых линз.

Гиперметропия, или дальнозоркость - это такое нарушение рефракции, когда параллельные лучи от далеко расположенных предметов из-за малойдлины глазного яблока или слабой преломляющей способностиглаза фокусируются за сетчаткой. Для коррекции гиперметро-

пии используются двояковыпуклые, собирающие линзы.

Существует старческая дальнозоркость, или пресбиопия, связанная с потерей хрусталиком эластичности, который плохо изменяет свою кривизну при натяжении цинновых связок. Поэтому точка ясного видения находится не на расстоянии 10 см от глаза, а отодвигается от

него и близко расположенные предметы видны расплывчато.

Для коррекции пресбиопии пользуются двояковыпуклыми линзами.

Острота зрения - это наименьшее расстояние между двумя точками, которые глаз способен видеть раздельно.

2.2.5. Влияние факторов окружающей среды на распространённость некоторых болезней

Изучению взаимосвязей факторов окружающей среды и различных видов заболеваний посвящено большое количество научных исследования, опубликовано огромное количество статей и монографий. Мы попытаемся дать очень короткий анализ только основных направлений исследований по данной проблеме.

При анализе причинно следственных связей между показателями здоровья и состоянием окружающей среды исследователи, прежде всего, уделяют внимание зависимостям показателей состояния здоровья от состояния отдельных компонентов окружающей среды: воздуха, воды, почвы, продуктов питания и др. В табл. 2.13 приведён ориентировочный перечень факторов окружающей среды и их влияния на развитие различных патологий.

Как видим загрязнение атмосферного воздуха, считают одной из основных причин заболеваний болезни системы кровообращения, врождённых аномалий и патологий беременности, новообразований рта, носоглотки, верхних дыхательных путей, трахеи, бронхов, лёгких и других органов дыхания, новообразований мочеполовой системы.

В числе причин этих заболеваний на первом месте стоит именно загрязнение воздуха. В числе причин других заболеваний загрязнение воздуха стоит на 2-м, 3-м и 4-м местах.

Таблица 2.13

Ориентировочный перечень факторов окружающей среды в связи с их

возможным влиянием на уровень распространенности

некоторых классов и групп болезней

Патология

Болезни системы кровообращения

1. Загрязнение атмосферного воздуха окислами серы, окисью углерода, окислами азота, фенолом, бензолом, аммиаком, сернистыми соединениями, сероводородом, этиленом, пропиленом, бутиленом, жирными кислотами, ртутью и др.

3. Жилищные условия

4. Электромагнитные поля

5. Состав питьевой воды: нитраты, хлориды, нитриты, жесткость воды

6. Биогеохимические особенности местности: недостаток или избыток кальция, магния, ванадия, кадмия, цинка, лития, хрома, марганца, кобальта, бария, меди, стронция, железа во внешней среде

7. Загрязнение окружающей среды пестицидами и ядохимикатами

8. Природно-климатические условия: быстрота смены погоды, влажность, барометрическое давление, уровень инсоляции, сила и направление ветра

Болезни кожи и подкожной клетчатки

1. Уровень инсоляции

3. Загрязнение атмосферного воздуха

Болезни нервной системы и органов чувств. Психические расстройства

1. Природно-климатические условия: быстрота смены погоды, влажность, барометрическое давление, температурный фактор

2. Биогеохимические особенности: высокая минерализация почвы и воды

3. Жилищные условия

4. Загрязнение атмосферного воздуха окислами серы, окисью углерода, окислами азота, хромом, сероводородом, двуокисью кремния, формальдегидом, ртутью и др.

6. Электромагнитные поля

7. Хлорорганические, фосфорорганические и др. пестициды

Болезни органов дыхания

1. Природно-климатические условия: быстрота смены погоды, влажность

2. Жилищные условия

3. Загрязнение атмосферного воздуха: пылью, окислами серы, окислами азота, окисью углерода, сернистым ангидридом, фенолом, аммиаком, углеводородом, двуокисью кремния, хлором, акролеином, фотооксидантами, ртутью и др.

4. Хлорорганические, фосфорорганические и др. пестициды

Болезни органов пищеварения

1. Загрязнение окружающей среды пестицидами и ядохимикатами

2. Недостаток или избыток микроэлементов во внешней среде

3. Жилищные условия

4. Загрязнение атмосферного воздуха сероуглеродом, сероводородом, пылью, окислами азота, хлором, фенолом, двуокисью кремния, фтором и др.

6. Состав питьевой воды, жёстокость воды

Продолжение табл. 2.13

Болезни крови и кроветворных органов

1. Биогеохимические особенности: недостаток или избыток хрома, кобальта, редкоземельных металлов во внешней среде

2. Загрязнение атмосферного воздуха окислами серы, окисью углерода, окислами азота, углеводородом, азотистоводородной кислотой, этиленом, пропиленом, амиленом, сероводородом и др.

3. Электромагнитные поля

4. Нитриты и нитраты в питьевой воде

5. Загрязнение окружающей среды пестицидами и ядохимикатами.

Врождённые аномалии

4. Электромагнитные поля

Болезни эндокринной системы, расстройства питания, нарушения обмена веществ

1. Уровень инсоляции

2. Избыток или недостаток свинца, йода, бора, кальция, ванадия, брома, хрома, марганца, кобальта, цинка, лития, меди, бария, стронция, железа, урохрома, молибдена во внешней среде

3. Загрязнение атмосферного воздуха

5. Электромагнитные поля

6. Жёсткость питьевой воды

Болезни мочеполовых органов

1. Недостаток или избыток цинка, свинца, йода, кальция, марганца, кобальта, меди, железа во внешней среде

2. Загрязнение атмосферного воздуха сероуглеродом, двуокисью углерода, углеводородом, сероводородом, этиленом, окисью серы, бутиленом, амиленом, окисью углерода

3. Жёсткость питьевой воды

В том числе: патология беременности

1. Загрязнение атмосферного воздуха

2. Электромагнитные поля

3. Загрязнение окружающей среды пестицидами и ядохимикатами

4. Недостаток или избыток микроэлементов во внешней среде

Новообразования рта, носоглотки, верхних дыхательных путей, трахеи, бронхов, лёгких и других органов дыхания

1. Загрязнение атмосферного воздуха

2. Влажность, уровень инсоляции, температурный фактор, количество дней с суховеями и пыльными бурями, барометрическое давление

Продолжение табл. 2.13

Новообразования пищевода, желудка и других органов пищеварения

1. Загрязнение окружающей среды пестицидами и ядохимикатами

2. Загрязнение атмосферного воздуха канцерогенными веществами, акролеином и другими фотооксидантами (окислами азота, озоном, ПАВ, формальдегидом, свободными радикалами, органическими перекисями, мелкодисперсными аэрозолями).

3. Биогеохимические особенности местности: недостаток или избыток магния, марганца, кобальта, цинка, редкоземельных металлов, меди, высокая минерализация почвы

4. Состав питьевой воды: хлориды, сульфаты. Жесткость воды

Новообразования мочеполовых органов

1. Загрязнение атмосферного воздуха сероуглеродом, двуокисью углерода, углеводородом, сероводородом, этиленом, бутиленом, амиленом, окислами серы, окисью углерода

2. Загрязнение окружающей среды пестицидами

3. Недостаток или избыток магния, марганца, цинка, кобальта, молибдена, меди во внешней среде

4. Хлориды в питьевой воде

Вторым по степени влияния на заболеваемость, обусловленную экологическими причинами в большинстве случаев можно считать недостаток или избыток микроэлементов во внешней среде. Для новообразований пищевода, желудка и других органов пищеварения это проявляется в биогеохимических особенностях местности: недостатке или избытке магния, марганца, кобальта, цинка, редкоземельных металлов, меди, высокой минерализации почвы. Для болезней эндокринной системы, расстройств питания, нарушения обмена веществ – это избыток или недостаток свинца, йода, бора, кальция, ванадия, брома, хрома, марганца, кобальта, цинка, лития, меди, бария, стронция, железа, урохрома, молибдена во внешней среде и т д.

Данные табл. 2.13 показывают, что химические вещества, пыль и минеральные волокна, вызывающие заболевания раком, действуют, как правило, избирательно, поражая те или иные органы. Большинство раковых заболеваний при действии химических веществ, пыли и минеральных волокон связано, очевидно, с профессиональной деятельностью. Однако, как показали исследования риска, население, проживающие в зонах влияния опасных химических производств (например, в г. Чапаевск), также подвержено воздействию. В этих зонах выявлены повышенные уровни раковых заболеваний. Мышьяк и его соединения, а также диоксины оказывают воздействие на всё население в силу большой распространённости. Бытовые привычки и пищевые продукты естественно оказывают воздействие на всё население.

Изучению возможности поступления токсичных веществ одновременно несколькими путями и их комплексному воздействию на здоровье населения посвящены работы многих Российских и зарубежных учёных (Авалиани С.Л., 1995; Винокур И.Л., Гильденскиольд Р.С., Ершова Т.Н. и др., 1996; Гильденскиольд Р.С., Королев А.А., Суворов Г.А. и др., 1996; Касьяненко А.А., Журавлёва Е.А., Платонов А.Г. и др., 2001; Ott W.R., 1985).

Одними из опаснейших химических соединений являются стойкие органические загрязнители (СОЗ), которые попадают в окружающую среду при производстве хлорсодержащих веществ, сжигании бытовых и медицинских отходов, использовании пестицидов. К этим веществам относятся восемь пестицидов (ДДТ, альдрин, дильдрин, эндрин, гептахлор, хлордан, токсафен, мирекс), полихлорированные бифенилы (ПХБ) диоксины, фураны, гексахлорбензол (Ревич Б.А., 2001). Эти вещества представляют опасность для здоровья человека не зависимо от путей, по которым они попадают в организм. В табл. 2.14 приведены характеристики воздействия перечисленных восьми пестицидов и полихлорованных бифенилов.

Как видим, названные вещества оказывают влияние и на репродуктивные функции, и являются причиной раковых заболеваний, приводят к нарушениям нервной и иммунной систем и другим не менее опасным эффектам.

Таблица 2.14

Воздействие СОЗ на здоровье (краткий список): эмпирические открытия

(Ревич Б.А., 2001)

Вещества

Воздействие

Повреждения репродуктивной функции в живой природе, особенно утончение яичной скорлупы у птиц

ДДЭ, метаболит ДЦТ, возможно, связан с раком молочной железы (M.S, Wolff, P.G.Toniolo, 1995), но результаты имеют неоднозначный характер (N. Krieger et al., 1994; D.J. Hunter et al., 1997)

Высокие дозы приводят к нарушениям нервной системы (конвульсиям, тремору, мышечной слабости) (R. Carson, 1962)

Альдрин, диль-дрин, эндрин

Эти вещества обладают сходным характером воздействия, но эндрин – наиболее токсичный из них

Связь с подавлением иммунной системы (Т. Colborn, С. Clement, 1992)

Нарушения нервной системы (конвульсии), влияние на функции печени при высоком уровне воздействия (R. Carson, 1962)

Альдрин, диль-дрин, эндрин

Диэлдрин – воздействие на репродуктивную функцию и на поведение (S. Wiktelius, C.A. Edwards, 1997)

Возможный канцероген для человека; в высоких концентрациях, вероятно, способствует возникновению опухолей молочной железы (К. Nomata et al., 1996)

Гептахлор

Воздействие на уровни прогестерона и эстрогена у лабораторных крыс (J.A. Oduma et al., 1995)

Нарушения нервной системы и функции печени (ЕРА, 1990)

Гексахлорбен-

зол (ГХБ)

Поражает DNA в клетках печени человека (R. Canonero et al., 1997)

Изменения функций клеток белой крови при производственном экспонировании (M.L. Queirox et al., 1997)

Изменения образования стероидов (W.G. Foster et al., 1995)

Высокие уровни экспонирования связывают с порфиринурией. метаболическим заболеванием печени (I.M. Rietjens et al., 1997)

Увеличение щитовидной железы, покрытие рубцами и артрит проявляются у потомства случайно экспонированных женщин (Т. Colborn, С. Clement, 1992)

Вероятный канцероген для человека

Вызывает подавление иммунной системы (Т. Colborn, С. Clement, 1992)

У крыс проявляет токсическое воздействие на плод, включая образование катаракты (WHO, Environmental Health Criteria 44: Mirex, 1984)

Гипертрофия печени вследствие долгосрочного экспонирования малыми дозами у крыс (WHO, 1984)

Продолжение таблицы 2.14

Полихлорированные дибензо-p - диоксины – ПХДД и

полихлорированные дибензофураны – ПХДФ

Токсическое воздействие на развитие, эндокринную, иммунную систему; репродуктивную функцию человека

2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДЦ) – канцероген для человека (IARC, 1997)

Токсическое воздействие на развитие и иммунную систему у животных, особенно у грызунов (A. Schecter, 1994)

Изменение уровней гормонов – эстрогена, прогестерона, тестостерона и тироида – у некоторых особей; снижение уровня тестостерона в сыворотке крови у экспонированных людей (А. Schecter, 1994)

Препятствует действию эстрогена у некоторых особей; уменьшение плодовитости, размера выводка и веса матки у мышей, крыс, приматов (A. Schecter, 1994)

Хлоракне как ответ на высокую дозу вследствие кожного или системного воздействия (A. Schecter, 1994)

Акнеформенная сыпь, возникающая вследствие контакта с кожей (Н.А. Tilson et al., 1990)

Эстрогенное воздействие на объекты живой природы (J.M. Bergeron et al., 1994)

Токсафен

Возможный канцероген для человека, вызывает нарушения репродуктивной функции и развития у млекопитающих

Проявляет эстрогенную активность (S.F. Arnold et al., 1997)

Полихлориро-ванные бифе-нилы – ПХБ

Воздействие на плод, в результате которого наблюдаются изменения нервной системы и развития ребенка, снижение его психомоторных функций, краткосрочной памяти и познавательных функций, долгосрочное воздействие на интеллект (Н.А. Tilson et al.. 1990; Jacobson et al., 1990; J.L. Jacobson, S.W. Jacobson, 1996)

В XX веке впервые возникли экологические заболевания, т. е. заболевания, возникновение которых связано только с воздействием конкретных химических веществ (табл. 2.15). Среди них наиболее известны и хорошо изучены болезни, связанные с воздействием ртути, – болезнь Минамата; кадмия – болезнь Итай-Итай; мышьяка – «черная стопа»; полихлорированных бифенилов – Ю-Шо и Ю-Ченг (Ревич Б.А., 2001).

Таблица 2.15

Загрязняющие вещества и экологические заболевания населения

Загрязняющие вещества

Экологические заболевания

Мышьяк в пищевых продуктах и воде

Рак кожи – провинция Кордоба (Аргентина), «черная стопа» – остров Тайвань. Чили

Метилртуть в воде, рыбе

Болезнь Минамата. 1956, Ниигата, 1968 -Япония

Метилртуть в продуктах питания

Смертельные исходы – 495 человек, отравления – 6 500 человек – Ирак, 1961

Кадмий в воде и рисе

Болезнь Итай-Итай – Япония, 1946

Загрязнение риса маслом, содержащим ПХБ

Болезнь Ю-Шо – Япония, 1968; болезнь Ю-Ченг – остров Тайвань, 1978-1979

При изучении раковых заболеваний населения, связанных с воздействием различных химических веществ, полезно знать, какие вещества признаны ответственными за заболевание тех или иных органов (табл. 2.16).

Таблица 2.16

Доказанные канцерогены для человека (группа 1 по классификации МАИР)

(В. Худолей, 1999; Ревич Б.А.,2001)

Наименование фактора

Органы-мишени

Группа населения

1. Химические соединения

4-Аминобифенил

Мочевой пузырь

Бензидин

Мочевой пузырь

Кроветворная система

Бериллий и его соединения

Бис (хлорметил)эфир и технический хлорметиловый эфир

Винил хлорид

Печень, кровеносные сосуды (мозг, лёгкие, лимфатическая система)

Горчичный газ (сернистый иприт)

Глотка, гортань, лёгкие

Кадмий и его соединения

Лёгкие, предстательная железа

Каменноугольные пеки

Кожа, лёгкие, мочевой пузырь (гортань, полость рта)

Каменноугольные смолы

Кожа, лёгкие (мочевой пузырь)

Минеральные масла (неочищенные)

Кожа (лёгкие, мочевой пузырь)

Мышьяк и его соединения

Лёгкие, кожа

Общие группы населения

2-Нафтиламин

Мочевой пузырь (лёгкие)

Никель и его соединения

Полость носа, лёгкие

Сланцевые масла

Кожа (желудочно-кишечный тракт)

Диоксины

Лёгкие (подкожная клетчатка, лимфатическая система)

Рабочие, общие группы населения

Хром шестивалентный

Лёгкие (полость носа)

Этиленоксид

Кроветворная и лимфатическая системы

2. Бытовые привычки

Алкогольные напитки

Глотка, пищевод, печень, гортань, полость рта (молочная железа)

Общие группы населения

Жевательный бетель с табаком

Полость рта, глотка, пищевод

Общие группы населения

Табак (курение, табачный дым)

Лёгкие, мочевой пузырь, пищевод, гортань, поджелудочная железа

Общие группы населения

Табачные продукты, бездымные

Полость рта, глотка, пищевод

Общие группы населения

3. Пыли и минеральные волокна

Лёгкие, плевра, брюшина (желудочно-кишечный тракт, гортань)

Древесная пыль

Полость носа и параназальные синусы

Кремний кристаллический

Кожа, лёгкие

Плевра, брюшина

Продолжение таблицы 2.16

Ряд загрязняющих веществ и ионизирующая радиация оказывает отрицательное воздействие на репродуктивное здоровье – см. табл. 2.17 – (Ревич Б.А.,2001).

Таблица 2.17

Загрязняющие вещества и нарушения репродуктивного здоровья

(Priority Health Conditions, 1993; Т . Aldrich, J. Griffith, 1993)

Вещество

Нарушения

Ионизирующая радиация

Бесплодие, микроцефалия, хромосомные нарушения, рак у детей

Нарушения менструального цикла, спонтанные аборты, слепота, глухота, задержка умственного развития

Бесплодие, спонтанные аборты, врожденные пороки развития, малый вес при рождении, нарушения спермы

Малый вес новорождённых

Марганец

Бесплодие

Спонтанные аборты, уменьшение веса тела новорождённых, врождённые пороки развития

Полиароматические углеводороды (ПАУ)

Уменьшение фертильности

Дибромхлорпропан

Бесплодие, изменения спермы

Спонтанные аборты, малый вес новорождённого, врожденные пороки развития, бесплодие

1,2-дибром-3-хлор-пропан

Нарушения спермы, стерильность

Врождённые пороки развития (глаза, уши, рот), нарушения деятельности центральной нервной системы, перинатальная смертность

Дихлорэтилен

Врождённые пороки развития (сердце)

Дильдрин

Спонтанные аборты, преждевременные роды

Гексахлорциклогексан

Гормональные нарушения, спонтанные аборты, преждевременные роды

Спонтанные аборты, малый вес новорождённых, нарушения менструального цикла, атрофия яичников

Сероуглерод

Нарушения менструального цикла, нарушения сперматогенеза

Органические растворители

Врождённые пороки развития, рак у детей

Анестетики

Бесплодие, спонтанные аборты, низкий вес при рождении, опухоли у эмбриона

С 1995 г. в России начала внедряться методика оценки риска здоровью населения, обусловленного загрязнением окружающей среды, разработанная Агентством по охране окружающей среды США (USA EPA). В ряде городов (Пермь, Волгоград, Воронеж, Новгород Великий, Волгоград, Новокузнецк, Красноуральск, Ангарск, Нижний Тагил) при поддержке Агентства по международному развитию и Агентства по охране окружающей среды США были выполнены проекты по оценке и управлению риском здоровью населения, вызванного загрязнением воздуха и питьевой воды (Управление риском, 1999; Методология риска, 1997). Большая заслуга в проведении этих исследований, организации работ и внедрению научных результатов принадлежит выдающимся российским ученым Г.Г. Онищенко, С.Л. Авалиани, К.А. Буштуевой, Ю.А. Рахманину, С.М. Новикову, А.В. Киселеву и др.

Контрольные вопросы и задачи

1. Проанализируйте и дайте характеристику факторов окружающей среды на различные заболевания (см. табл. 2.13).

2. К каким заболеваниям приводит воздействие стойких органических загрязнителей?

3. Перечислите наиболее известные болезни, появившиеся в ХХ в., воздействием каких веществ они были обусловлены и в чём проявлялись?

4. Какие вещества относят к доказанным канцерогенам и заболевания каких органов человека они вызывают?

5. Какие вещества вызывают нарушения репродуктивного здоровья?

6. Проанализировать и дать характеристику влияния факторов окружающей среды на различные виды патологий в соответствии с таблицей 2.14.

Предыдущая

Дата создания: 2015/02/09

При неблагоприятных факторах воздействия на сосудистую кровеносную систему человека: магнитные бури, изменение климата, малоподвижный образ жизни, нарушение гигиены питания, режима дня т. д. – возникают патологические заболевания (болезненные) изменения в строении и функциях сосудистой системы человеческого организма.

Боли, сердцебиение, «перебои» и другие неприятные ощущения в области сердца – это наиболее распространенные жалобы больных при посещении врача. Особенно часто к различным нарушениям сердечной деятельности приводят заболевания нервной системы, поскольку психические переживания имеют прямую связь с сердечной деятельностью. Регулирующую и контролирующую функцию работы сердца и сосудов выполняет центральная нервная система. Рассмотрим взаимосвязи функции сердца и нервной системы.

Из центральной нервной системы по центробежным нервам к сердцу подходит нервный импульс-приказ, оказывающий решающее влияние на работу сердца. Информацию о состояниях и изменениях в функции сердечно-сосудистой системы нервная система получает от нервных окончаний в сосудах и в сердце – интерорецепторов, которые реагируют на изменение химического состава среды, температуры, кровяного давления и т.д. В регулирующей деятельности участвуют и гормоны-вещества, выделяемые железами внутренней секреции (гипофизом, надпочечниками и другими железами) и нервными окончаниями (нейрогормонами). В центральной нервной системе расположены центры, с помощью которых осуществляются сосудодвигательные реакции. Работа всей нервной системы, регулирующей кровообращение, взаимосвязана. Однако важнейшая координирующая роль принадлежит коре головного мозга и подкорковым вегетативным центрам. Нарушения сердечной деятельности в связи с заболеванием нервной системы называют неврозом сердца. Его могут вызвать сильные стрессовые ситуации, перенапряжение, психические травмы, алкоголь, никотин, наркотики. При неврозах часто наблюдается сочетание стенокардии и других болевых ощущений.

К нарушению функции сердечной мышцы приводит ревматизм-заболевание суставов. Обычно ревматизмом заболевают дети от 8 до 13 лет.

Болезненные отклонения в деятельности сердца отмечаются почти в 100%ревматических заболеваний, которые часто переходят в порок сердца. Это заболевание сердца связано с нарушением его функции в результате поражения сердечных клапанов или сужения прикрываемых отверстий. Пороки сердца бывают врожденные, которые формируются в процессе внутриутробного развития человека, и приобретенные, которые часто развиваются как последствия ревматизма и обычно сопровождаются поражением двухстворчатого клапана сердца и его левого предсердно-желудочного отверстия. Профилактика заболевания –улучшение функции сердца путем комплекса специальных упражнений. Питание должно быть регулярным и умеренным.

Ишемическая (от греч. искхо – задерживать, препятствовать и хайма – кровь) болезнь имеет несколько форм, среди них различают стенокардию, инфаркт, постинфарктный кардиосклероз, различные нарушения сердечного ритма. Наиболее распространенная из них стенокардия обусловлена тем, что в сердечной мышце возникают участки, которые недостаточно снабжаются кровью. Это происходит чаще всего от поражения артерий сердца атеросклерозом, возникающим при увеличении в крови холестерина.

Возникновению стенокардии способствует переедание и полнота человека, что приводит к перенапряжению в работе сердца; кислородное голодание, когда человек мало бывает на открытом воздухе; малая физическая активность и стрессовые ситуации. Длительный спазм одной из венечных артерий может сопровождаться полной закупоркой её просвета. К спазму венечных артерий предрасполагают такие факторы риска, как курение, алкоголь, наркотики, эмоциональный стресс. Но если никотин, алкоголь, наркотики действуют непосредственно на сосуды, то при стрессе причиной спазма коронарных, венечных сосудов становится резкий выброс в кровь гормонов надпочечников катехоламинов (норадреналина и адреналина), которые повышают свертываемость крови, в результате чего и происходит спазм.

Устоявшуюся точку зрения специалистов кардиологов на происхождение инфаркта по причине спазма и закупорки венечных артерий сердца и нарушения кровоснабжения сердечной мышцы подверг сомнению профессор медицины из Милана Джоржи Барольди. С помощью особой методике он исследовал тысячи сердец людей, погибших от инфаркта, и пришел к выводу, что взамен отмирающим сосудам развиваются сосуды-«мостики», берущие функцию снабжения мышцы кровью на себя. Даже в здоровом сердце в каждой его области действует замещающее кровоснабжение. Замещающая система действует так успешно, что благодаря ей, заболевший сосуд становится ненужным сердцу.. И несмотря на то, что сердечно-сосудистые заболевания занимают первое место в мире среди всех заболеваний, тайн они ещё сохраняют много. О происхождении и механизме инфаркта ещё не сказано последнее слово.

Исходя из теоретического изучения этого вопроса, можно сделать следующие выводы:

  • Снижение уровня холестерина в крови. Для этого необходимо максимально исключить из рациона питания жирные сорта мяса и рыбы, сливочное масло, сало, сыр, сметану. Увеличить потребление овощей и фруктов. Обязательно в день добавлять в блюда примерно 30 г. Любого растительного масла.
  • Снижение массы тела. Исключить из рациона жирные продукты, сладости, мучные изделия, ограничить потребление соли. Увеличить физическую нагрузку: ходьба, подъем по лестнице, физическая работа.
  • Отказ от курения, наркотиков, алкоголя.

Любые влияния среды легче переносить с тренированной сердечно-сосудистой системой. Их сердце в покое работает несколько замедленно, а при нагрузках усиление кровотока достигается за счет увеличения количества выбрасываемой крови за один раз, и только при относительно сильных нагрузках у них возрастает и частота сердечных сокращений. Сердце нетренированного человека усиливает свою работу только за счет увеличения частоты сердечных сокращений. В результате паузы между сердечными циклами сокращаются, кровь не успевает заполнить сердечные камеры.

Это утверждение мы решили подтвердить определением уровня физического состояния нескольких подростков (курящих, занимающихся спортом, и некурящих и не занимающихся спортом).

В настоящее время известно множество ритмических процессов в организме, называемых биоритмами. Ритмы работы сердца, биоэлектрические явления мозга, но центральное место занимают суточные ритмы. Реакция организма на любое воздействие зависит от фазы суточного ритма.

Сон играет огромную роль, как в работе всего организма, так и в работе сердца. Чтобы оптимально распределять время сна и отдыха, нужно ясно осознавать к какому типу вы относитесь. Жаворонки наиболее приспособлены к изменяющимся условиям и выдерживают достаточные нагрузки, не нанося урону сердцу. Совы гораздо чаще страдают язвой желудка, стенокардией, гипертонией. Средний суточный выброс гормонов у сов в 1.5 раз выше, чем у жаворонков. Это тот допинг, за счет которого обеспечивается вечерняя и ночная активность.

Поэтому совам необходимо соблюдать следующие рекомендации, не пытаясь перестраивать свои ритмы:

  • Не насилуйте свою природу, не пытайтесь утром воспитывать силу воли. Борьба между волей и организмом может закончиться поражением огранизма.
  • Выберите себе будильник, у которого сигнал достаточно громкий, но не резкий.
  • Сигнал будильника должен прозвучать на 10-15 минут раньше того времени, когда вам необходимо встать.
  • Спокойно полежите, это время в постели с закрытыми глазами, потянитесь.

Утром принимайте только теплый душ.

Погодные условия включают в себя комплекс физических условий: атмосферное давление, влажность, движение воздуха, концентрацию кислорода, степень возмущенности магнитного поля.