Количество кислорода, потребленного человеком натощак в состоянии мышечного покоя, лежа, является показателем обмена, необходимого для поддержания жизненно важных функций организма в покое, т. е. основного обмена. Основной обмен человека характеризуется потреблением кислорода в пределах 200-250 мл/мин с энергетической затратой примерно 1-1,2 ккал/мин. На основной обмен оказывают влияние пол, возраст, вес и поверхность тела, состав пищи, климатические условия, температура окружающей среды и др. За норму энергетического основного обмена взрослого человека принята 1 ккал на 1 кг веса в час.

Повышенное потребление кислорода при работе необходимо для окисления продуктов распада углеводов в аэробной фазе (молочной кислоты), жиров, а также для ресинтеза азотсодержащих веществ в анаэробной фазе. Потребность организма в кислороде тем больше, чем напряженнее работа. В определенных пределах существует линейная зависимость между тяжестью выполняемой работы и потреблением кислорода. Это соответствие обеспечивается усилением работы сердечно-сосудистой системы и увеличением коэффициента диффузии кислорода через ткань легких. Коэффициент диффузии увеличивается от 50 при работе мощностью 450 кг/мин до 61 при работе мощностью 1590 кг/мин.

Количество кислорода в минуту, необходимое для полного окисления продуктов распада, носит название кислородного запроса, или кислородной потребности, максимальное же количество кислорода, которое организм может получить в минуту, носит название кислородного потолка. Кислородный потолок у нетренированных к физической работе людей составляет примерно 3 л/мин, а у тренированных может достигать 4-5 л/мин.

Энергетические затраты при динамической отрицательной работе составляют примерно 50% энергетических затрат при динамической положительной работе. Так, передвижение груза по горизонтальной плоскости в 9-16 раз легче, чем подъем груза.

Рис. 1. Динамика потребления кислорода при физической работе. Штриховка в клетку - потребление кислорода во время работы; горизонтальная штриховка - кислородный запрос; вертикальная штриховка - кислородный долг. Рисунок слева - работа средней тяжести; рисунок справа - работа с прогрессирующей кислородной задолженностью.

Потребление кислорода при динамической положительной работе показано на рис. 1. Как видно из этого рисунка, кривая потребления кислорода в начале работы растет и только через 2-3 минуты устанавливается на определенном уровне, который затем удерживается длительное время (устойчивое состояние). Сущность такого хода кривой в том, что вначале работа производится при неполном удовлетворении кислородного запроса и вследствие этого - при нарастающем кислородном долге, так как энергетические процессы в мышце при сокращении ее происходят мгновенно, а доставка кислорода вследствие инертности сердечно-сосудистой и дыхательной систем - медленно. И лишь тогда, когда доставка кислорода соответствует полностью кислородной потребности, наступает устойчивое состояние потребления кислорода.

Кислородный долг, образовавшийся в начале работы, погашается уже после прекращения работы, в период восстановления, во время которого потребление кислорода достигает исходного уровня. Такова динамика потребления кислорода при работе легкой и средней тяжести. При тяжелой работе устойчивое состояние потребления кислорода по существу никогда не наступает, к дефициту кислорода в начале работы присоединяется дефицит кислорода, образовавшийся во время нее. В этом случае потребление кислорода все время растет вплоть до кислородного потолка. Восстановительный период при такой работе значительно удлиняется. В случае, когда кислородный запрос при работе превышает кислородный потолок, наступает так называемое ложное устойчивое состояние. Оно отражает кислородный потолок, а не истинную потребность в кислороде. Восстановительный период при этом оказывается еще более длительным.

Таким образом, по уровню потребления кислорода в связи с работой можно судить о тяжести выполняемой работы. Устойчивое состояние потребления кислорода во время работы может указывать на то, что кислородный запрос полностью удовлетворяется, что накопление молочной кислоты в мышцах и крови не происходит, что она успевает ресинтезироваться в гликоген. Отсутствие же устойчивого состояния и рост потребления кислорода во время работы свидетельствуют о тяжести работы, о накоплении молочной кислоты, требующей кислорода для своего ресинтеза. Еще более тяжелая работа характеризуется ложным устойчивым состоянием.

Длительность периода восстановления потребления кислорода также указывает на большую или меньшую тяжесть работы. При легкой работе кислородная задолженность небольшая. Образовавшаяся молочная кислота в большей своей части успевает ресинтезироваться в мышцах в гликоген во время работы, длительность восстановительного периода не превышает нескольких минут. После тяжелой работы потребление кислорода падает сначала быстро, а затем очень медленно, общая длительность восстановительного периода может доходить до -30 минут и более.

Восстановление потребления кислорода не означает восстановления нарушенных функций организма в целом. Многие функции организма, например состояние дыхательной и сердечно-сосудистой систем, дыхательный коэффициент, биохимические процессы и др., к этому времени еще не достигают исходного уровня.

Для анализа газообменных процессов определенный интерес могут представить изменения дыхательного коэффициента CO 2 /O 2 (ДК).

При устойчивом состоянии потребления кислорода во время работы ДК может указывать на характер окисляемых веществ. При тяжелой работе ДК повышается до 1, что указывает на окисление углеводов. После работы ДК может быть больше 1, что объясняется нарушением кислотно-щелочного равновесия крови и повышением концентрации водородных ионов (рН): повышенная рН продолжает возбуждать дыхательный центр и вследствие этого углекислота усиленно вымывается из крови при одновременном падении потребления кислорода, т. е. в отношении CO 2 /O 2 числитель увеличивается, а знаменатель уменьшается.

В более поздней стадии восстановления ДК может быть ниже исходного дорабочего показателя. Объясняется это тем, что в восстановительном периоде освобождаются щелочные резервы крови, и для поддержания нормальной рН задерживается углекислота.

При статической работе потребление кислорода носит иной характер. В трудовом процессе наиболее конкретным выражением статической работы является поддержание рабочей позы человека. Рабочая поза как состояние равновесия тела может осуществляться в порядке активного противодействия внешним силам; при этом возникает длительное тетаническое напряжение мышц. Этот вид статической работы весьма неэкономен в иннервационном и энергетическом отношениях. Рабочая же поза, при которой поддержание равновесия происходит путем приспособления к направлению силы тяжести, значительно более экономна, так как при этом отмечается тоническое, а не тетаническое напряжение мышцы. В практике наблюдаются оба вида статической работы, нередко сменяющие друг друга, но основное значение с точки зрения физиологии труда имеет статическая работа, сопровождающаяся тетаническим напряжением. Динамика потребления кислорода при таком виде статической работы показана на рис. 2.

Из схемы видно, что во время статического напряжения потребление кислорода значительно меньше, чем кислородный запрос, т. е. мышца работает почти в анаэробных условиях. В период, непосредственно следующий за работой, потребление кислорода резко возрастает, а затем постепенно падает (феномен Лингарда), причем период восстановления может быть длительным, так почти вся потребность в кислороде удовлетворяется после работы. Лингард дал следующее объяснение открытому им феномену. При тетаническом «сокращении мышцы вследствие сжатия сосудов создается механическое препятствие кровотоку и тем самым доставке кислорода и оттоку продуктов распада - молочной кислоты. Статическая работа анаэробна, следовательно, характерный скачок в сторону повышения потребления кислорода после работы обусловлен потребностью окисления продуктов распада, образовавшихся при работе.

Это объяснение не является исчерпывающим. На основании учения Н. Е. Введенского низкое потребление кислорода при статической работе может быть обусловлено не столько механическим фактором, сколько снижением обмена вследствие прессорно-рефлекторных влияний, механизм которых заключается в следующем. В результате статического напряжения (непрерывные импульсы с мышцы) определенные клетки коры головного мозга приходят в состояние сильного длительного возбуждения, приводящего в конечном итоге к тормозным явлениям типа парабиотического блока. После прекращения статической работы (пессимального состояния) наступает период экзальтации - повышенной возбудимости и как следствие - повышение обмена. Состояние повышенной возбудимости распространяется на дыхательный и сердечно-сосудистый центры. Описанный вид статической работы малоэнергоемкий, потребление кислорода, даже при очень значительном статическом напряжении, редко превышает 1 л/мин, но утомление может наступать довольно быстро, что объясняется изменениями, происшедшими в центральной нервной системе.

Другой вид статической работы - поддержание позы за счет тонического сокращения мышц - требует незначительных энергетических затрат и менее утомителен. Объясняется это характерными для тонической иннервации редкими и более или менее равномерными импульсами из центральной нервной системы и особенностями самой сократительной реакции, редкой и слабой импульсацией, тягучестью и слитностью импульсов, устойчивостью эффекта. Примером может служить привычное положение человека стоя.


Рис. 2. Схема феномена Лингарда.

Кровеносная система состоит из сердца и кровеносных сосудов. Ритмические сокращения сердечной мышцы обеспечивает непрерывное движение крови в замкнутой системе сосудов. Кровь, выполняя трофическую функцию, переносит питательные вещества из тонкого кишечника к клеткам всего организма, она же обеспечивает транспортировку кислорода от легких к тканям и углекислого газа от тканей к легким, осуществляя дыхательную функцию.

При этом в крови циркулирует большое количество биологически активных веществ, которые регулируют и объединяют функциональную деятельность клеток организма. Кровь обеспечивает выравнивание температуры различных частей тела. Дыхательная система включает в себя носовую полость, гортань, трахею, бронхи и легкие. В процессе дыхания из атмосферного воздуха через альвеолы легких в организм постоянно поступает кислород, а из организма выделяется углекислый газ.

Процесс дыхания - это целый комплекс физиологических процессов, в реализации которых участвует не только дыхательный аппарат, но и система кровообращения. Трахея в нижней своей части делится на два бронха, каждый из которых, входя в легкие, древовидно разветвляется. Конечные мельчайшие разветвления бронхов (бронхиолы) переходят в закрытые альвеолярные ходы, в стенках которых находится большое количество шаровидных образований - легочных пузырьков (альвеол). Каждая альвеола окружена густой сетью кровеносных капилляров. Общая поверхность всех легочных пузырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2. Легкие располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой - плеврой, такая же оболочка выстилает изнутри полость грудной клетки. Пространство, образованное между этими двумя листами плевры, называется плевральной полостью.

Давление в плевральной полости всегда ниже атмосферного при выдохе на 3-4 мм рт. ст., при вдохе-на 7-9 мм. Механизм дыхания осуществляется рефлекторно (автоматически). В покое обмен воздуха в легких происходит в результате дыхательных ритмических движений грудной клетки. При понижении в грудной полости давления в легкие (в достаточной степени пассивно за счет разности давлений) засасывается порция воздуха -происходит вдох. Затем полость грудной клетки уменьшается и воздух из легких выталкивается - происходит выдох. Расширение полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры. В покое при вдохе полость грудной клетки расширяет специальная дыхательная мышца, речь о которой шла ранее, - диафрагма, а также наружные межреберные мышцы; при интенсивной физической работе включаются и другие (скелетные) мышцы. Выдох в покое производится выраженно пассивно, при расслаблении мышц, осуществлявших вдох, грудная клетка под воздействием силы тяжести и атмосферного давления уменьшается.

При интенсивной физической работе в выдохе участвуют мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы. Систематические занятия физическими упражнениями и спортом укрепляют дыхательную мускулатуру и способствуют увеличению объема и подвижности (экскурсии) грудной клетки. Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови - в атмосферный воздух, называют внешним дыханием; перенос газов кровью -следующий этап, и, наконец, тканевое (или внутреннее) дыхание -потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии для обеспечения процессов жизнедеятельности организма.

Внешнее (легочное) дыхание осуществляется в альвеолах легких. Здесь через полупроницаемые стенки альвеол и капилляров происходит переход кислорода из альвеолярного воздуха, заполняющего полости альвеол. Молекулы кислорода и углекислого газа осуществляют этот переход за сотые доли секунды. После переноса кислорода кровью к тканям осуществляется тканевое (внутриклеточное) дыхание. Кислород переходит из крови в межтканевую жидкость и оттуда в клетки тканей, где используется для обеспечения процессов обмена веществ. Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, из которых выводится из организма.

Переход кислорода и углекислого газа через полупроницаемые стенки альвеол, капилляров и оболочек эритроцитов. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спинного мозга; восходящих чувствительных (эфферентных), связывающих все органы и ткани человеческого тела (кроме головы) с головным мозгом, нисходящих двигательных (афферентных) путей, идущих от головного мозга к двигательным клеткам спинного мозга.

Таким образом, нетрудно себе представить, что спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двигательные нервные клетки), иннервирующие мышцы верхних конечностей, спины, груди, живота, нижних конечностей.

В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой деятельности. Важной функцией мотонейронов является постоянное обеспечение необходимого тонуса мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами центральной нервной системы. Поражения спинного мозга влекут за собой различные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса и т. д. Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов.

Строение головного мозга несравнимо сложнее строения любого органа человеческого тела. Назовем некоторые особенности и жизненно важные функции. Так, например, такое образование заднего мозга, как продолговатый мозг, является местом расположения важнейших рефлекторных центров (дыхательного, пищевого, регулирующих кровообращение, потоотделение). Поэтому поражение этого отдела головного мозга вызывает мгновенную гибель. Говорить подробно о специфике строения и функциях коры головного мозга мы не будем, однако необходимо отметить, что кора больших полушарий головного мозга является наиболее молодым в филогенетическом отношении отделом мозга (филогенез - процесс развития растительных и животных организмов в течение времени существования жизни на Земле).

В процессе эволюции кора больших полушарий приобретает существенные структурные и функциональные особенности и становится высшим отделом центральной нервной системы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой. Видимо, полезно будет охарактеризовать еще некоторые анато-мо-физиологические особенности головного мозга человека.

Головной мозг человека весит в среднем 1400 г. Связь между весом мозга и весом тела человека, по данным различных авторов, сравнительно невелика. Многочисленными исследованиями установлено, что нормальная деятельность мозга связана с кровоснабжением. Как известно, основным источником энергии, необходимой для функционирования нервных элементов, является процесс окисления глюкозы. Однако в мозгу нет запасов углеводов и тем более кислорода, и поэтому нормальный обмен веществ в нем целиком зависит от постоянной доставки энергетических ресурсов с кровью.

Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет кислорода в 5 раз больше, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% веса тела человека, мозг поглощает 18-25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Им используется 60-70% глюкозы, образуемой печенью, что составляет в сутки 115 г, и это несмотря на то, что по количеству содержащейся крови мозг стоит на одном из последних мест.

Ухудшение кровоснабжения головного мозга может быть связано с гиподинамией (малоподвижным образом жизни). При гиподинамии наиболее часты жалобы на головную боль различной локализации, интенсивности и продолжительности, головокружение, слабость, пониженную умственную работоспособность, ухудшение памяти, раздражительность. Вегетативная нервная система - специализированный отдел единой нервной системы мозга регулируется, в частности, корой больших полушарий.

В отличие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулирует деятельность внутренних органов - дыхания, кровообращения, выделения, размножения, желез внутренней секреции и т. д. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы.

Деятельность сердца, сосудов, органов пищеварения, выделения, половых и т. д.; регуляция обмена веществ, термообразования, участие в формировании эмоциональных реакций (страх, гнев, радость) - все это находится в ведении симпатической и парасимпатической нервной систем и все под тем же контролем со стороны высшего отдела центральной нервной системы. Экспериментально показано, что их влияние носит хотя и антагонистический характер, но согласованный в регуляции важнейших функций организма. Рецепторы и анализаторы. Главным условием нормального существования организма является его способность быстро приспосабливаться к изменениям окружающей среды. Эта способность реализуется за счет наличия специальных образований - рецепторов.

Рецепторы, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление и т. д.) в нервные импульсы, которые по нервным волокнам передаются в центральную нервную систему. Рецепторы человека делятся на две основные группы: экстеро (внешние) и интеро (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, в которую поступают импульсы и которая называется анализатором.

Анализатор состоит из трех отделов - рецептора, проводниковой части и центрального образования в головном мозгу. Высший отдел анализатора - корковый. Не вдаваясь в подробности, перечислим только названия анализаторов, о роли которых в жизнедеятельности любого человека многим известно. Это - кожный анализатор (тактильная, болевая, тепловая, холодовая чувствительность), двигательный (рецепторы в мышцах, суставах, сухожилиях и связках возбуждаются под влиянием давления и растяжения), вестибулярный (воспринимает положение тела в пространстве), зрительный (свет и цвет), слуховой (звук), обонятельный (запах), вкусовой (вкус), висцеральный (состояние ряда внутренних органов).

Мозг жадно поглощает кислород. В этом легко убедиться, определив концентрацию кислорода в артериальной и венозной крови. Во время отдыха мозг потребляет кислорода почтой в 20 раз больше, чем мышечная ткань. При напряженной умственной работе потребление кислорода мозгом отчетливо возрастает.

О ненасытной потребности мозга в кислороде свидетельствуют и такие цифры. Вес головного мозга взрослого человека, как правило, составляет 2-2,5 процента веса тела. В то же время мозг потребляет 1 / 5 или даже 1 / 4 часть от всего кислорода, который расходует человеческий организм.

В душной комнате нам плохо думается. Это испытывал, по-видимому, каждый. Некоторые люди особенно тяжело переносят нехватку кислорода. А наши дети? Они еще хуже переносят кислородную недостаточность. И это не случайно. У ребенка до четырехлетнего возраста около половины потребляемого организмом кислорода расходует мозг.

Мозговая ткань - самая чувствительная к наркотикам и этиловому спирту. Даже небольшие концентрации алкоголя угнетают ее дыхание...

Исследователи рассчитали, что запасы кислорода, растворенного в крови, в кровеносных сосудах головного мозга и в самой ткани, весьма ограничены. Всего на 10 секунд хватает ему собственных ресурсов. Если кислород не поступает с током крови, то очень скоро может наступить биохимическая катастрофа.

А собственно говоря, для чего мозговой ткани нужно много кислорода?

Вероятно, для того, чтобы при этом совершалась работа, мозг мог жить. И вот тут мы встречаемся с явлением, которое характерно только для мозга.

Чтобы совершать работу, нужно сжигать какое-то топливо. Вот таким топливом, почти единственным, для мозга служит глюкоза. Кислород, главным образом, и расходуется на окисление этого вещества. Конечные продукты превращения глюкозы - углекислота и вода. Однако при этом образуется другой универсальный источник энергии - молекула АТФ. Она и обеспечивает практически все энергетические затраты мозга.

Мозг в определенном смысле бессребреник. Он не имеет никаких сколько-нибудь солидных запасов глюкозы и живет, как говорится, сегодняшним днем.

Убедиться в этом можно на простом, опыте. Обычной безопасной бритвой нарежем тончайшие ломтики внутренних органов лабораторных мышей: печени, почек, мышц. Срезы коры головного мозга сделать труднее, но можно.

Поместим срезы каждого органа отдельно в физиологический раствор, налитый в маленькие сосуды объемом несколько кубических сантиметров каждый. К сосудикам присоединим стеклянные манометры с делениями. В манометр нальем небольшое количество специально приготовленной и окрашенной жидкости. Теперь всю нашу конструкцию опустим в ванну с теплой водой, но так, чтобы манометр был снаружи ванны, а сосудик - внутри ее. Температура воды в ванне 37 градусов, то есть близка к температуре тела лабораторного животного.

Срезы органов дышат и потребляют кислород. Объем газа в сосудике уменьшается, и это отражается на показаниях манометра. Столбик жидкости ползет кверху. Конечно, медленно, но вполне заметно. Таким образом можно рассчитать, сколько кубических миллиметров кислорода поглотилось навеской ткани в 100 миллиграммов за одну минуту.

И вот тут мы сталкиваемся с необычным явлением. Срезы тканей печени, почек, мышц потребляют кислород с постоянной скоростью в течение довольно-таки длительного времени. Во всяком случае, этот процесс можно наблюдать и пять и десять минут. Другое дело мозговая ткань. Ее дыхание быстро замедляется, но стоит добавить каплю раствора глюкозы, как она оживает и дышит снова с прежней интенсивностью.

Опыт, который мы проделали, очень наглядный. Он свидетельствует, что нервные клетки коры головного мозга покрывают свои энергетические потребности почти исключительно за счет глюкозы, которая транспортируется с током крови.

И вот теперь возникает законный вопрос: каким образом при окислении глюкозы образуется другой универсальный источник энергии - молекулы аденозинтрифосфорной кислоты?

Гиппократ - великий врач Древней Греции - в одном из своих сочинений писал: "Есть в человеке и горькое, и соленое, и сладкое, и кислое, и жесткое, и мягкое, и многое другое в бесконечном числе, разнообразии по свойствам, количеству, силе". На примере окислительных превращений глюкозы в мозгу человека и образовании другого универсального источника энергии - аденозинтрифосфорной кислоты можно проследить систему удивительных превращений "сладкого", глюкозы, в АТФ, "кислое", по Гиппократу.

Если просто сжечь молекулы глюкозы в токе кислорода, образуются вода и углекислый газ. При этом выделится значительное количество энергии. Конечно, этот способ образования энергии неприемлем для живой клетки. Энергия в клетке потребляется небольшими порциями. Она должна образовываться постепенно и накапливаться "про запас". Располагая резервом "консервированной энергии", живая клетка способна чрезвычайно быстро отвечать на изменения внешней среды. Более того, процесс наработки энергии клетка может то замедлять, то резко убыстрять.

Каждый из нас наблюдал это бессчетное количество раз. Например, вы спокойно сидели на стуле. Расход энергии в мышечной ткани был сравнительно небольшой. Вы быстро встали и бросились стремительно бежать; биохимическая фабрика по производству энергии заработала на полную мощность.

Длинная цепь биохимических превращений глюкозы началась. Она насчитывает десятки химических преобразований постепенно расщепляемой молекулы исходного соединения. Но нас в данном случае интересует конечный результат. При полном окислении одной молекулы глюкозы синтезируется тридцать восемь молекул аденозинтрифосфорной кислоты.

Вот теперь становится понятным, почему в головном мозгу энергия нарабатывается главным образом путем окисления глюкозы, путем дыхания. При таком способе ее образуется особенно много. Процесс мышления сопровождается значительной затратой энергии в самом прямом смысле этого слова.

Е. ЗВЯГИНА.

Ученые-физиологи утверждают, что недостаток кислорода в ряде случаев может быть полезен для организма и даже способствует излечиванию от многих болезней.

Недостаток кислорода в органах и тканях (гипоксия) возникает по разным причинам.

Лауреат Государственной премии Украины профессор А. 3. Колчинская. Под ее руководством была создана компьютерная программа, оценивающая работу органов дыхания, а также разработана система гипоксической тренировки.

Сеанс гипоксической тренировки. Несколько минут пациент дышит через гипоксикатор, потом снимает маску и дышит обычным воздухом. Процедура повторяется четыре-шесть раз.

Можно разучиться плавать или ездить на велосипеде, но дыхание - процесс, протекающий помимо нашего сознания. Специального обучения тут, слава богу, не требуется. Может быть, поэтому большинство из нас имеет крайне приблизительные представления о том, как мы дышим.

Если спросить об этом у человека, далекого от естественных наук, ответ, скорее всего, будет следующим: мы дышим легкими. На самом деле это не совсем так. Человечеству понадобилось более двухсот лет, чтобы понять, что такое дыхание и в чем его суть.

Схематически современную концепцию дыхания можно представить следующим образом: движения грудной клетки создают условия для вдоха и выдоха; мы вдыхаем воздух, а с ним и кислород, который, проходя трахею и бронхи, поступает в легочные альвеолы и в кровеносные сосуды. Благодаря работе сердца и содержащемуся в крови гемоглобину кислород доставляется ко всем органам, к каждой клетке. В клетках имеются мельчайшие зернышки - митохондрии. В них-то и происходит переработка кислорода, то есть осуществляется собственно дыхание.

Кислород в митохондриях «подхватывается» дыхательными ферментами, которые доставляют его уже в виде отрицательно заряженных ионов к положительно заряженному иону водорода. При соединении ионов кислорода и водорода выделяется большое количество тепла, необходимого для синтеза основного накопителя биологической энергии - АТФ (аденозинт-рифосфорной кислоты). Энергия, выделяющаяся при распаде АТФ, используется организмом для осуществления всех жизненных процессов, для любой его деятельности.

Так протекает дыхание в нормальных условиях: то есть в воздухе содержится достаточное количество кислорода, а человек здоров и не испытывает перегрузок. Но что происходит, когда баланс нарушается?

Систему дыхания можно сравнить с компьютером. В компьютере есть чувствительные элементы, через которые информация о ходе процесса передается в центр управления. Такие же чувствительные элементы имеются и в дыхательной цепочке. Это хеморецепторы аорты и сонных артерий, передающие информацию о снижении концентрации кислорода в артериальной крови либо о повышении в ней содержания углекислого газа. Происходит так, например, в тех случаях, когда во вдыхаемом воздухе уменьшается количество кислорода. Сигнал об этом через специальные рецепторы передается дыхательному центру продолговатого мозга, а оттуда идет к мышцам. Усиливается работа грудной клетки и легких, человек начинает дышать чаще, соответственно улучшаются вентиляция легких и доставка кислорода в кровь. Возбуждение рецепторов сонных артерий вызывает также учащение сердечных сокращений, что усиливает кровообращение, и кислород быстрее доходит к тканям. Этому способствует и выброс в кровь новых эритроцитов, а следовательно, и содержащегося в них гемоглобина.

Именно этим объясняется благотворное влияние горного воздуха на жизненный тонус человека. Приезжая на горные курорты - скажем, на Кавказ, - многие замечают, что настроение у них улучшается, кровь будто бежит быстрее. А секрет прост: воздух в горах разреженный, кислорода в нем меньше. Организм работает в режиме «борьбы за кислород»: чтобы обеспечить полноценную доставку кислорода к тканям, ему необходимо мобилизовать внутренние ресурсы. Учащается дыхание, усиливается кровообращение, и как следствие жизненные силы активизируются.

Но если подняться выше в горы, где в воздухе содержится еще меньше кислорода, организм будет реагировать на его нехватку совсем по-другому. Гипоксия (по-научному - недостаток кислорода) будет уже опасна, и в первую очередь от нее пострадает центральная нервная система.

Если кислорода не хватает для поддержания работы головного мозга, человек может потерять сознание. Сильная гипоксия иногда приводит даже к смерти.

Но гипоксия не обязательно вызывается низким содержанием кислорода в воздухе. Ее причиной могут послужить те или иные болезни. Например, при хроническом бронхите, бронхиальной астме и различных заболеваниях легких (пневмония, пневмосклероз) не весь вдыхаемый кислород поступает в кровь. Результат - недостаточное снабжение кислородом всего организма. Если в крови мало эритроцитов и заключенного в них гемоглобина (как это бывает при анемии), страдает весь процесс дыхания. Можно дышать часто и глубоко, но доставка кислорода к тканям существенно не повысится: ведь именно гемоглобин отвечает за его транспорт. Вообще система кровообращения напрямую связана с дыханием, поэтому перебои в сердечной деятельности не могут не повлиять на доставку кислорода к тканям. К гипоксии ведет и образование тромбов в кровеносных сосудах.

Итак, работа дыхательной системы разлаживается при существенном недостатке кислорода в воздухе (например, высоко в горах), а также при различных заболеваниях. Но оказывается, что человек может испытывать гипоксию, даже если здоров и дышит насыщенным кислородом воздухом. Это происходит при увеличении нагрузки на организм. Дело в том, что в активном состоянии человек потребляет значительно больше кислорода, чем в спокойном. Любая работа - физическая, интеллектуальная, эмоциональная - требует определенных энергетических затрат. А энергия, как мы выяснили, генерируется при соединении кислорода и водорода в митохондриях, то есть при дыхании.

Конечно, в организме есть механизмы, регулирующие поступление кислорода при увеличении нагрузки. Здесь осуществляется тот же принцип, что и в случае с разреженным воздухом, когда рецепторы аорты и сонных артерий регистрируют снижение концентрации кислорода в артериальной крови. Возбуждение этих рецепторов передается коре больших полушарий головного мозга и всем его отделам. Усиливаются вентиляция легких и кровоснабжение, что предотвращает снижение скорости доставки кислорода к органам и клеткам.

Любопытно, что организм в ряде случаев заранее может принимать меры против гипоксии, в частности возникающей при нагрузке. Основа этого - прогнозирование будущего увеличения нагрузки. На этот случай в организме также есть особые чувствительные элементы - они реагируют на звуковые, цветовые сигналы, изменения запаха и вкуса. Например, спортсмен, услышав команду «На старт!», получает сигнал к перестройке работы дыхательной системы. В легкие, в кровь и к тканям начинает поступать больше кислорода.

Однако нетренированный организм зачастую не способен наладить полноценную доставку кислорода при значительной нагрузке. И тогда человек страдает от гипоксии.

Проблема гипоксии давно привлекала внимание ученых. Серьезные разработки велись под руководством академика Н. Н. Сиротинина в Институте физиологии им. А. А. Богомольца АН УССР. Продолжением этих исследований стала работа профессора лауреата Государственной премии Украины А. 3. Колчинской и ее учеников. Они создали компьютерную программу, позволяющую оценивать работу дыхательной системы человека по различным показателям (объем вдыхаемого воздуха, скорость попадания кислорода в кровь, частота сердечных сокращений и т. д.). Работа велась, с одной стороны, со спортсменами и альпинистами и с другой - с людьми, страдающими теми или иными заболеваниями (хроническим бронхитом, бронхиальной астмой, анемией, диабетом, маточными кровотечениями, детским церебральным параличом, близорукостью и др.). Компьютерный анализ показал, что даже те болезни, которые, казалось бы, не имеют прямого отношения к дыхательной системе, отрицательно на ней отражаются. Логично предположить и обратную связь: функционирование системы дыхания может отразиться на состоянии всего организма.

И тогда возникла идея гипоксической тренировки. Вспомним: при небольшом снижении количества кислорода в воздухе (например, в предгорье) организм активизирует жизненные силы. Дыхательная система перестраивается, приспосабливаясь к новым условиям. Увеличивается объем дыхания, усиливается кровообращение, происходит наращивание эритроцитов и гемоглобина, увеличивается число митохондрий. Таких результатов можно добиться и в клинических условиях, обеспечив пациенту приток воздуха с пониженным содержанием кислорода. Для этого был создан специальный аппарат - гипоксикатор.

Но ведь человек не может постоянно быть подключенным к аппарату. Необходимо добиться устойчивых результатов, качественных изменений в системе дыхания. С этой целью было решено разбить сеанс гипоксического воздействия на серии: оказалось, что именно при таком режиме механизмы, наработанные организмом для адаптации к гипоксии, закрепляются. Несколько минут пациент дышит через гипоксикатор (содержание кислорода в подаваемом воздухе составляет 11 - 16%), потом снимает маску и какое-то время дышит обычным воздухом. Такое чередование повторяется четыре-шесть раз. В результате от сеанса к сеансу тренируются органы дыхания, кровообращения, кроветворения и те органеллы клеток, которые принимают участие в утилизации кислорода, - митохондрии.

Для каждого пациента режим интервальной гипоксической тренировки подбирается индивидуально. Важно определить ту концентрацию кислорода во вдыхаемом воздухе, при которой в организме начнут действовать механизмы адаптации к гипоксии. Конечно, для спортсмена и для больного бронхиальной астмой эти концентрации неодинаковы. Поэтому перед тем, как назначить курс лечения, делают гипоксическую пробу, которая определяет реакцию организма на вдыхание воздуха с пониженным содержанием кислорода.

Сегодня гипоксическая тренировка уже доказала свою эффективность при лечении самых разнообразных болезней. Преяеде всего, конечно, при заболеваниях дыхательных путей, таких как

обструктивный хронический бронхит и бронхиальная астма. Уже одно это более чем оправдывает труд ученых, разработавших метод. Но самое удивительное, что с его помощью поддаются лечению и те болезни, которые, на первый взгляд, вообще не имеют отношения к дыханию.

Например, как показал Б. X. Хацуков, метод оказался эффективен при лечении близорукости. Более 60% близоруких детей, с которыми был проведен курс гипоксическои тренировки, полностью восстановили зрение, у остальных оно значительно улучшилось. Дело в том, что причиной близорукости является плохое кровоснабжение и снабжение кислородом реснитчатой мышцы глаза и затылочных долей коры головного мозга, регулирующих зрение. У близоруких детей система дыхания отстает в возрастном развитии. А при ее нормализации зрение восстанавливается.

А. 3. Колчинская и ее ученики М. П. Закусило и 3. X. Абазова провели удачный эксперимент по применению гипоксическои тренировки для лечения гипотериоза (пониженной активности щитовидной железы). При вдыхании пациентом воздуха с пониженным содержанием кислорода его щитовидная железа начала вырабатывать большее количество гормонов. Через несколько сеансов содержание гормонов в крови стало нормальным.

В настоящее время в России и странах СНГ работает уже довольно много специализированных центров гипоксическои терапии. В этих центрах успешно лечат больных анемией, ишеми-ческой болезнью сердца, гипертонией в начальной стадии, нейроциркуляторной дистонией, сахарным диабетом, некоторыми гинекологическими заболеваниями.

Хорошие результаты достигнуты и в тренировке спортсменов. После 15-дневного курса гипоксическои тренировки максимальное потребление кислорода у велосипедистов, гребцов и лыжников увеличивается на 6%. При обычной систематической спортивной тренировке на это уходит около года. А ведь дыхание в таких видах спорта - залог успеха. Кроме того, как мы знаем, от него зависит общее состояние организма, его потенциал.

Эффект гипоксическои тренировки сродни закалке или утренней гимнастике. Точно так же, как мы тренируем мышцы или повышаем иммунитет, обливаясь холодной водой, можно «натренировать» дыхательную систему. Жаль только, что в домашних условиях такую гимнастику не сделаешь. Пока еще за здоровье приходится платить.

Рис. 1. Строение позвоночника.

Соединения позвонков осуществляет­ся с помощью хрящевидных, эластичных межпозвоночных дисков и суставных отростков. Межпозво­ночные диски увеличивают подвижность позвоночника. Чем больше их толщина, тем выше гибкость. Если изгибы позвоночного столба выражены сильно (при сколиозах), подвижность грудной клетки уменьшается. Плоская или округлая спина (горбатая) свидетельствует о слабости мышц спины. Коррекция осанки проводится общеразвивающими, силовыми упражнениями и упражнениями на растяги­вание. Позвоночный столб позволяет совершать сгибания вперед и назад, в стороны, вращательные движения вокруг вертикальной оси.

Грудная клетка состоит из грудной кости (грудины), 12 грудных позвонков и 12 пар ребер (рис. 2).

Рис. 2. Скелет человека.

Ребра представляют собой плоские дугооб­разно-изогнутые длинные кости, которые при помощи гибких хрящевидных концов прикрепляются подвижно к грудине. Все соединения ребер очень эластичны, что имеет важное значение для обеспече­ния дыхания.

Грудная клетка защищает сердце, легкие, печень и часть пищеварительного тракта. Объем грудной клетки может изменяться в процессе дыхания при сокращении межреберных мышц и диафрагмы.

Скелет верхних конечностей образован плечевым поясом, состоящим из двух лопаток и двух ключиц, и свободной верхней конечностью, включающей плечо, предплечье и кисть. Плечо - это одна плечевая трубчатая кость; предплечье образовано лучевой и локтевой костями; скелет кисти делится на запястье (8 костей расположенных в два ряда), пястье (5 коротких трубчатых костей) и фаланги пальцев (5 фаланг).

Скелет нижней конечности включает тазовый пояс, состоящий из двух тазовых костей и крестца, и скелет свободной нижней конечности, который состоит из трех основных отделов - бедра (одна бедренная кость), голени (большая и малая берцовые кости) и стопы (предплюсна - 7 костей, плюсна - 5 костей и 14 фаланг).

Все кости скелета соединены посредством суставов, связок и сухожилий. Суставы обеспечивают подвижность сочленяющимся костям скелета. Суставные поверхности покрыты тонким слоем хряща, что обеспечивает скольжение суставных поверхностей с малым трением. Каждый сустав полностью заключен в суставную сумку. Стенки этой сумки выделяют суставную жидкость, которая играет роль смазки. Связочно-капсульный аппарат и окружающие сустав мышцы укрепляют и фиксируют его. Основными направлениями движения, которые обеспечивают суставы, являются: сгибание-разгибание, отведение-приведение, вращение и круговые движения.

Основные функции опорно-двигательного аппарата - опора и перемещение тела и его частей в пространстве.

Главная функция суставов - участвовать в осуществлении движений. Они играют также роль демпферов, гасящих инерцию движения и позволяющих мгновенно останавливаться в процессе движения.

Правильно организованные занятия по физическому воспитанию не наносят ущерба развитию скелета, он стано­вится более прочным в результате утолщения коркового слоя костей. Это имеет важное значение при выполнении физических упражнений, требующих высокой механической прочности (бег, прыжки и т. д.). Неправильное построение тренировочных занятий может привести к перегрузке опорного аппара­та. Однобокость в выборе упражнений также может вызвать деформацию скелета.

У людей с ограниченной двигательной активностью, труд которых характеризуется удержанием опре­деленной позы в течение длительного времени, возникают значительные изменения костной и хряще­вой ткани, что особенно неблагоприятно отражается на состоянии позвоночного столба и межпозво­ночных дисков. Занятия физическими упражнениями укрепляют позвоночник и за счет развития мы­шечного корсета ликвидируют различные искривления, что способствует выработке правильной осанки и расширению грудной клетки.

Любая двигательная, в том числе и спортивная, деятельность совершается при помощи мышц, за счет их сокращения. Поэтому строение и функциональные возможности мускулатуры необходимо знать лю­бому человеку, но в особенности тем, кто занимается физическими упражнениями и спортом.

Скелетные мышцы человека.

У человека около 600 мышц. Основные мышцы представлены на рис. 3.

Рис.3. Мышцы человека.

Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают произвольные и непроизвольные дыхательные движения. Дыхательные мышцы грудной клетки называются наружными и внутренними межреберными мышцами. К дыхательным мышцам относится также и диафрагма.

Мышцы спины состоят из поверхностных и глубоких мышц. Поверхностные обеспечивают некоторые движения верхних конечностей, головы и шеи. Глубокие («выпрямители туловища») прикрепляются к остистым отросткам позвонков и тянутся вдоль позвоночника. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении (сокращении) вызывают прогибание туловища назад.

Брюшные мышцы поддерживают давление внутри брюшной полости (брюшной пресс), участвуют в некоторых движениях тела (сгибание туловища вперед, наклоны и повороты в стороны), в процессе дыхания.

Мышцы головы и шеи - мимические, жевательные и приводящие в движение голову и шею. Мимические мышцы прикрепляются одним концом к кости, другим - к коже лица, некоторые могут начинаться и оканчиваться в коже. Мимические мышцы обеспечивают движение кожи лица, отражают различные психические состояния человека, сопутствуют речи и имеют значение в общении. Жевательные мышцы при сокращении вызывают движение нижней челюсти вперед и в стороны. Мышцы шеи участвуют в движениях головы. Задняя группа мышц, в том числе и мышцы затылка, при тоническом (от слова «тонус») сокращении задерживает голову в вертикальном положении.

Мышцы верхних конечностей обеспечивают движения плечевого пояса, предплечья и приводят в движение кисть и пальцы. Главными мышцами-антагонистами являются двуглавая (сгибатель) и трехглавая (разгибатель) мышцы плеча. Движения верхней конечности, и прежде всего кисти, чрезвычайно разнообразны. Это связано с тем, что рука служит человеку органом труда.

Мышцы нижних конечностей способствуют движениям бедра, голени и стопы. Мышцы бедра играют важную роль в поддержании вертикального положения тела, но у человека они развиты сильнее, чем у других позвоночных. Мышцы, осуществляющие движения голени, расположены на бедре (например, четырехглавая мышца, функцией которой является разгибание голени в коленном суставе; антагонист этой мышцы - двуглавая мышца бедра). Стопа и пальцы приводятся в движение мышцами, расположенными на голени и стопе. Сгибание пальцев стопы осуществляется при сокращении мышц, расположенных на подошве, а разгибание - при сокращении мышц передней поверхности голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении.

Существует два вида мускулатуры: гладкая (непроизвольная) и поперечнополосатая (произвольная). Гладкие мышцы находятся в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы - это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспечивающая ритмическую работу сердца на протяжении всей жизни.

Основа мышц - белки, составляющие 80-85 % мышечной ткани (исключая воду). Главное свойство мышечной ткани - сократимость , она обеспечивается благодаря сократительным мышечным белкам - актину и миозину. Мышечная ткань устроена очень сложно. Мышца имеет волокнистую структуру, каждое волокно - это мышца в миниатюре, совокупность этих волокон и образуют мышцу в целом. Мышечное волокно , в свою очередь, состоит из миофибрилл . Каждая миофибрилла разделена на чередующиеся светлые и темные участки. Темные участки состоят из длинных цепочек молекул миозина , светлые образованы более тонкими белковыми нитями актина .

Деятельность мышц регулируется центральной нервной системой. В каждую мышцу входит нерв, распадающийся на тонкие и тончайшие ветви. Нервные окончания до­ходят до отдельных мышечных волокон. Двигательные нервные волокна передают импульсы от головного и спинного мозга (возбуждение), которые приводят мышцы в рабочее состояние, заставляя их сокращаться. Чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную систему о деятельности мышц.

Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета, рычаги. Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движение при ходьбе, беге, жевании, глотании, дыхании и т. д., вырабатывая при этом тепло.

Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, реагируя, выполняют определенный двигательный акт - движение или напряжение.

Вся скелетная мускулатура состоит из поперечно-полосатых мышц. У человека их насчитывается около 600 и большинство из них парные. На долю мышц приходится значительная часть сухой массы тела человека. У женщин на мышцы при­ходится до 35 % общей массы тела, а у мужчин до 50 % соответственно. Специальной силовой трени­ровкой можно значительно увеличить мышечную массу. Физическое бездействие приводит к уменьше­нию мышечной массы, а зачастую - к увеличению жировой массы.

Скелетные мышцы снаружи покрыты плотной соединительнотканной оболочкой. В каждой мышце различают активную часть (тело мышцы ) и пассивную (сухожилие ). Сухожилия обладают упругими свойствами и являются последовательным упру­гим элементом мышцы. Сухожилия обладают большой прочностью на растяжение по сравнению с мы­шечной тканью. Наиболее слабыми и поэтому часто травмируемыми участками мышцы являются пере­ходы мышцы в сухожилие. Поэтому перед каждым тренировочным занятием необходима хорошая предварительная разминка.

Мышцы делятся на длинные, короткие и широкие.

Мышцы, действие которых направлено противоположно, называются антагонистами , а одновременно - синергистами .

По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели , приводящие и отводящие , сфинктеры (сжимающие) и расширители .

Все мышцы пронизаны сложной системой кровеносных сосудов. Протекающая по ним кровь снабжает их питательными веществами и кислородом.

Функции двигательного аппарата:

Опорная - фиксация мышц и внутренних органов;

Защитная - защита жизненно важных органов (головной и спиной мозг, сердце и др.);

Двигательная - обеспечение двигательных актов;

Рессорная - смягчение толчков и сотрясений;

Кроветворная - гемопоэз;

Участие в минеральном обмене.

Физиологические системы организма.

Нервная система. Нервная система человека объединяет все системы организма в единое целое и состоит из нескольких миллиардов нервных клеток и их отростков. Длинные отростки нервных клеток, объединяясь, образуют нервные волокна, которые подходят ко всем тканям и органам человека.

Нервная система состоит из центрального (головной и спинной мозг) и периферического (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов) отделов.

Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела. Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2 % массы тела человека, мозг поглощает 18- 25 % потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60-70 % глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы. Ухудшение кровоснабжения головного мозга может быть связано с гиподинамией. В этом случае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умственная работоспособность, ухудшается память, появляется раздражительность.

Спинной мозг лежит в спинномозговом канале, образованном дужками позвонков. В различных отделах спинного мозга находятся мотонейроны (двигательные нервные клетки), иннервирующие мышцы верхних конечностей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой деятельности. Тонус центров спинного мозга регулируется высшими отделами центральной нервной системы. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Периферическая нервная система образуется нервами, отходящими от головного и спинного мозга. От головного мозга отходят 12 пар черепных нервов, а от спинного - 31 пара спинномозговых нервов.

По функциональному принципу нервную систему делят на соматическую и вегетативную. Соматические нервы иннервируют поперечно-полосатую мускулатуру скелета и некоторые органы (язык, глотка, гортань и др.). Вегетативные нервы регулируют работу внутренних органов (сокращение сердца, перистальтика кишечника и др.).

Основными нервными процессами являются возбуждение и торможение, возникающие в нервных клетках. Возбуждение - состояние нервных клеток, когда они передают или направляют сами нервные импульсы другим клеткам. Торможение - состояние нервных клеток, когда их активность направлена на восстановление.

Нервная система действует по принципу рефлекса. Рефлекс - это ответная реакция организма на раздражение, как внутреннее, так и внешнее, осуществляемая при участии центральной нервной системы (ЦНС).

Различают два вида рефлексов: безусловный (врожденный) и условный (приобретенный в процессе жизнедеятельности).

Все движения человека представляют собой приобретенные в процессе индивидуальной жизни новые формы двигательных актов. Двигательный навык - двигательное действие, выполняемое автоматически без участия внимания и мышления.

В процессе физической тренировки нервная система человека совершенствуется, осуществляя более тонкое взаимодействие процессов возбуждения и торможения различных нервных центров. Тренировка позволяет более дифференцированно органам чувств осуществлять двигательное действие, формирует способность к более быстрому усвоению новых двигательных навыков. Основная функция нервной системы заключается в регуляции взаимодействия организма как единого целого с окружающей его внешней средой и в регуляции деятельности отдельных органов и связи между органами.

Рецепторы и анализаторы. Способность организма быстро приспосабливаться к изменениям окружающей среды реализуется благодаря специальным образованиям - рецепторам , которые, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступающие по нервным волокнам в центральную нервную систему.

Рецепторы человека делятся на две основные группы: экстеро - (внешние) и интеро - (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется анализатором. Анализатор состоит из трех отделов - рецептора, проводниковой части и центрального образования в головном мозге. Высшим отделом анализатора является корковый отдел головного мозга. Перечислим названия анализаторов, о роли которых в жизнедеятельности человека многим известно:

Кожный (тактильная, болевая, тепловая, холодовая чувствительность);

Двигательный (рецепторы в мышцах, суставах, сухожилиях и связках, возбуждаются под влиянием давления и растяжения);

Вестибулярный (расположен во внутреннем ухе и воспринимает положение тела в пространстве);

Зрительный (свет и цвет);

Слуховой (звук);

Обонятельный (запах);

Вкусовой (вкус);

Висцеральный (состояние ряда внутренних органов).

Состав и функции крови. Кровь - жидкая трофическая соединительная ткань организма, циркулирующая в сосудах и выполняющая следующие функции:

Транспортную - доставляет клеткам питательные вещества; обеспечивает гуморальную регуляцию.

Дыхательную - доставляет тканям кислород;

Экскреторную - удаляет из них продукты обмена и углекислый газ;

Защитную - обеспечение иммунитета и тромбообразования при кровотечениях;

Терморегулирующую - регулирует температуру тела.

Состав крови относительно стабилен и имеет слабую щелочную реакцию. Кровь состоит из плазмы (55 %) и форменных элементов (45 %).

Плазма - жидкая часть крови (90-92 % воды), содержащая органические вещества и соли(8 %), а также витамины, гормоны, растворенные газы.

Форменные элементы : эритроциты, лейкоциты и тромбоциты. Образование форменных элементов крови осуществляется в различных кроветворных органах - костном мозге, селезенке, лимфатических узлах.

Эритроциты - красные кровяные клетки (4-5 млн в куб. мм), являются носителем красного пигмента - гемоглобина. Основной физиологической функцией эритроцитов является связы­вание и перенос кислорода от легких к органам и тканям. Этот процесс осуществляется благодаря особенностям строения эритроцитов и хи­мического состава гемоглобина. Гемоглобин уникален тем, что обладает способностью к образованию веществ в комплексе с кислородом. В организме 750-800 г гемоглобина, его концентрация в крови у мужчин 14-15 %, у женщин 13-14 %. Гемоглобин определяет максимальную емкость крови (максимальное количество кислорода, которое может содержаться в 100 мл крови). Каждые 100 мл крови могут связать до 20 мл кислорода. Соединение гемоглобина с кислородом называется оксигемоглобином. Образуются эритроциты в клетках красного костного мозга.

Лейкоциты - белые кровяные клетки (6-8 тыс. в 1 куб. мм крови). Основная их функция - защита организма от возбудителей болезней. Они защищают организм от чужеродных бактерий, либо непосредственно уничтожая их посредством фагоцитоза (поглощения), либо образуя антитела для их уничтожения. Продолжительность жизни их 2-4 дня. Число лейкоцитов все время пополняется за счет вновь образующихся из клеток костного мозга, селезенки и лимфатических узлов.

Тромбоциты - кровяные пластинки (200-400 тыс./мм 3), способствуют свертываемости крови и при распаде выделяют сосудосуживающее вещество - сератонин.

Система кровообращения. Деятельность всех систем организма человека осуществляется при взаимосвязи гуморальной (жидкостной) и нервной регуляции. Гуморальная регуляция осуществляется внутренней системой транспортировки через кровь и систему кровообращения, к которой относится сердце, кровеносные сосуды, лимфатические сосуды и органы, вырабатывающие особые клетки - форменные элементы.

Нервная система усиливает или тормозит деятельность всех органов не только волнами возбуждения или нервными импульсами, но и посредством поступления в кровь, лимфу, спинномозговую и тканевую жидкости медиаторов, гормонов и продуктов обмена веществ. Эти химические вещества действуют на органы и на нервную систему. Таким образом, в естественных условиях не существует исключительно нервная регуляция деятельности органов, а нервно-гуморальная.

Движение крови и лимфы по сосудам происходит непрерывно, благодаря чему органы, ткани, клетки постоянно получают необходимые им в процессе ассимиляции пищевые вещества и кислород, и непрерывно удаляются продукты распада в процессе обмена веществ.

Кровообращение - это процесс направленного движения крови. Он происходит благодаря деятельности сердца и сосудов. Основные функции кровообращения - транспортная, обменная, выделительная, гомеостатическая, защитная. Система кровообращения обеспечивает транспорт дыхательных газов, питательных и биологически активных веществ, гормонов, перенос тепла внутри организма.

Кровь в организме человека движется по замкнутой системе, в которой выделяются две части - большой и малый круги кровообращения. Правая сторона сердца продвигает кровь по малому кругу кровообращения, левая сторона сердца - по большому кругу кровообращения (рис. 4).

Рис. 4. Большой и малый круги кровообращения.

Малый круг кровообращения начинается от правого желудочка сердца. Затем кровь поступает в легочный ствол, который разделяется на две легочные артерии, делящиеся в свою очередь на более мелкие артерии, переходящие в капилляры альвеол, где происходит газообмен (в легких кровь отдает углекислый газ и обогащается кислородом). Из каждого легкого выходит по две вены, впадающие в левое предсердие.

Большой круг кровообращения начинается от левого желудочка сердца. Обогащенная кислородом и питательными веществами кровь поступает ко всем органам и тканям, где происходит газообмен и обмен веществ. Забрав из тканей углекислый газ и продукты распада, кровь собирается в вены и двигается к правому предсердию.

Безостановочное движение крови по сосудам обусловлено ритми­ческими сокращениями сердца, которые чередуются с его расслабле­нием. Благодаря насосной функции сердца, создающей разность давления в артериальном и венозном отделах сосудистой системы в результате периодического чередования сокращений и расслаблений желудочков и предсердий, кровь движется по сосудам непрерывно, в определенном направлении. Сокращение сердечной мышцы называется систолой , а ее расслабление - диастолой . Период, включающий систолу и диастолу, составляет сердечный цикл .

Деятельность сердца характеризуется систолами предсердий (0,1 с) и желудочков (0,35 с) и диастолой (0,45 с).

У человека существуют три типа кровеносных сосудов: артерии, вены, капилляры. Артерии и вены отличаются друг от друга направлением движения крови в них. Артерии несут кровь от сердца к тканям, а вены возвращают ее от тканей к сердцу. Капилляры - тончайшие сосуды, они тоньше человеческого волоса в 15 раз.

Сердце - центральный орган системы кровообращения. Сердце представляет собой полый мышечный орган, разделенный продольной перегородкой на правую и левую половины. Каждая из них состоит из предсердия и желудочков, отделенных фиброзными перегородками (рис. 5).

Рис. 5. Сердце человека.

Клапанный аппарат сердца - образование, обеспечивающее прохождение крови по сосудистой системе в одном направлении. В сердце различают створчатые клапаны между предсердиями и желудочками и полулунные - на выходе крови из желудочков в аорту и легочную артерию.

Автоматия сердца - способность сердца ритмически возбуждаться без участия регуляции центральной нервной системы. Движение крови по сосудам обеспечивается, кроме насосной функции сердца, присасывающим действием грудной клетки и динамическим сдавливанием сосудов мышц при физической работе.

Артериальная кровь движется по сосудам от сердца под воздействием давления создаваемого сердечной мышцей в момент ее сокращения. На возвратное движение крови по венам оказывает влияние несколько факторов:

Во-первых, венозная кровь продвигается к сердцу под действием сокращений скелетных мышц, которые как бы выталкивают кровь из вен в сторону сердца, при этом обратное движение крови исключается, так как клапаны, находящиеся в венах пропускают кровь только в направлении к сердцу. Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблении скелетных мышц, называется мышечным насосом. Таким образом, скелетные мышцы при циклических движениях существенно помогают сердцу обеспечивать циркуляцию крови в сосудистой системе;

Во-вторых, при вдохе происходит расширение грудной клетки и в ней создается пониженное давление, которое обеспечивает подсасывание венозной крови к грудному отделу;

В-третьих, в момент систолы (сокращения) сердечной мышцы при расслаблении предсердий в них возникает подсасывающий эффект, способствующий движению венозной крови к сердцу.

Сердце работает автоматически под контролем центральной нервной системы, волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту при сокращении левого желудочка, называется частотой сердечных сокращений (ЧСС).

Ритм работы сердца зависит от возраста, пола, массы тела, трени­рованности. У молодых здоровых людей частота сердечных сокраще­ний (ЧСС) составляет 60-80 ударов в минуту. У взрослого мужчины в покое составляет 65-75 ударов/мин, у женщин на 8-10 ударов больше, чем у мужчин. У тренированных спортсменов ЧСС в покое может достигать 40-50 ударов/мин.

ЧСС менее 60 ударов/мин называется брадикардией , а более 90 - тахикар­дией .

Количество крови, выталкиваемой желудочком сердца в аорту при одном сокращении, называется систолическим (ударным) объемом крови , в состоянии покоя он составляет 60-80 мл. При физической нагрузке у нетренированных он возрастает до 100-130 мл, а у тренированных до 180-200 мл.

Количество крови, выбрасываемое одним желудочком сердца в течение одной минуты, называется минутным объемом крови (МОК). В состоянии покоя этот показатель равен в среднем 4-6 л. При физической нагрузке он повышается у нетренированных до 18-20 л, а у тренированных до 30-40 л.

Давление движущейся по сердечно-сосудистой системе крови обусловлено, главным образом, работой сердца, сопротивлением стенок сосудов и гидростатическими силами. В аорте и центральных артериях большого круга кровообращения давление крови (артериальное давление) в покое при систоле (момент сердечного сокращения) составляет 115-125 мм рт. ст., при диастоле (давление в момент расслабления сердечной мышцы) составляет 60-80 мм рт. ст.

По данным Всемирной организации здравоохранения, оптимальными показателями артериального давления являются цифры 120/80.

Нормальным пониженным для взрослого человека является 100-110/60-70 .Ниже этих величин давление является гипотоническим .

К нормальным высоким показателям относятся цифры 130-139/85-89. Выше этих величин давление является гипертоническим .

У людей пожилого возра­ста кровяное давление выше, чем у молодых; у детей оно ниже, чем у взрослых.

Величина артериального давления зависит от сократительной силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови.

Под воздействием физической тренировки размеры, масса сердца увеличиваются в связи с утолщением стенок сердечной мышцы и увеличением его объема. Мышца тренированного сердца более густо пронизана кровеносными сосудами, что обеспечивает лучшее питание мышечной ткани и ее работоспособность.

Дыхание. Дыханием называется комплекс физиологических, биохимических и биофизических процессов, обеспечивающих поступление кислорода в организм, транспорт его к тканям и органам, а также образование, выделение и выведение из организма углекислого газа и воды. Выделяют следующие звенья системы дыхания: внешнее дыхание, транспорт газов кровью и тканевое дыхание.

Внешнее дыхание осуществляется с помощью дыхательного аппарата, состоящего из воздухоносных путей (полость носа, носоглотка, гортань, дыхательное горло, трахеи и бронхи). Стенки носового хода выстланы мерцательным эпителием, который задерживает поступающую с воздухом пыль. Внутри носового хода происходит согревание воздуха. При дыхании через рот воздух поступает сразу в глотку и из нее в гортань, не очищаясь и не согреваясь (рис. 6).


Рис. 6. Строение дыхательного аппарата человека.

При вдохе воздух попадает в легкие, каждое из которых находится в плевральной полости и работает изолированно друг от друга. Каждое легкое имеет форму конуса. Со стороны, обращенной к сердцу, в каждое легкое входит бронх, делясь на более мелкие бронхи, образуется так называемое бронхиальное дерево. Мелкие бронхи заканчиваются альвеолами, которые оплетены густой сетью капилляров, по которым течет кровь. При прохождении крови по легочным капиллярам и происходит газообмен: углекислый газ, выделяясь из крови, поступает в альвеолы, а те отдают в кровь кислород.

Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, потребление кислорода и др.

Дыхательный объем - объем воздуха, проходящий через легкие за один дыхательный цикл (вдох, выдох), этот показатель значительно увеличивается у тренированных и составляет от 800 мл и более. У нетренированных дыхательный объем в состоянии покоя находится на уровне 350-500 мл.

Если после нормального вдоха сделать максимальный выдох, то из легких выйдет еще 1,0-1,5 л воздуха. Этот объем принято называть резервным. Количество воздуха, которое можно вдохнуть сверх дыхательного объема называют дополнительным объемом.

Сумма трех объемов: дыхательного, дополнительного и резервного составляет жизненную емкость легких. Жизненная емкость легких (ЖЕЛ) - максимальный объем воздуха, который может выдохнуть человек после максимального вдоха (измеряется методом спирометрии). Жизненная емкость легких в значительной степени зависит от возраста, пола, роста, окружности грудной клетки, физического развития. У мужчин ЖЕЛ колеблется в пределах 3200-4200 мл, у женщин 2500-3500 мл. У спортсменов, особенно занимающихся циклическими видами спорта (плаванием, лыжными гонками и т. п.), ЖЕЛ может достигать у мужчин 7000 мл и более, у женщин 5000 мл и более.

Частота дыхания - количество дыхательных циклов в минуту. Один цикл состоит из вдоха, выдоха и дыхательной паузы. Средняя частота дыхания в покое 15-18 циклов в минуту. У тренированных людей, за счет увеличения дыхательного объема, частота дыхания снижается до 8-12 циклов в минуту. При физической нагрузке частота дыхания увеличивается, например, у пловцов до 45 циклов в минуту.

Легочная вентиляция - объем воздуха, который проходит через легкие за минуту. Величина легочной вентиляции определяется умножением величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое находится на уровне 5000-9000 мл. При физической нагрузке этот показатель увеличивается.

Потребление кислорода - количество кислорода, использованного организмом в покое или при нагрузке за 1 минуту. В состоянии покоя человек потребляет 250-300 мл кислорода в 1 минуту. При физической нагрузке эта величина увеличивается. Наибольшее количество кислорода, которое организм может потребить в минуту при предельной мышечной работе, называется максимальным потреблением кислорода (МПК).

Наиболее эффективно дыхательную систему развивают циклические виды спорта (бег, гребля, плавание, лыжный спорт и т. п.) (табл. 1)

Табл. 1. Некоторые морфофункциональные показатели сердечно-сосудистой