Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток» Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»




Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами. Размер индивидуального клона - 0,5-1 млн зрелых клеток Продолжительность жизни клона - не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.


Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.


Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) II отдел - пул поли - или мультипотентных стволовых кроветворных клеток (СКК) СКК обладают уникальным свойством - полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.


Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток. 90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.


Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.


Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге - около 0,01%, а вместе с клетками-предшественниками - 0,05%.


Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называютколониеобразующими единицами (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.


Дифференцировка клеток гемопоэза III отдел - По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки- предшественники, имеющие ограниченную потентность, так как коммитированы (commit - принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно- макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ - двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.


Дифференцировка клеток гемопоэза Клетки IV отдела - монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-Г для гранулоцитарного, КОЕ-М - для моноцитарно-макрофагального, КОЕ-М - для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Э и БОЕ-Э (бурстобразующая единица) - предшественники эритроидных клеток, КОЕ-Мгкц - предшественники мегакариоцитов КОЕ-Мгкц - предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.


СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название homing-effect (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике. СКК и клетки-предшественники обладают способностью к миграции - выходу в кровь и возвращению в костный мозг, что получило название homing-effect (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.


Дифференцировка клеток гемопоэза V отдел морфологически распознаваемых клеток включает: дифференцирующиеся, дифференцирующиеся, созревающие созревающие зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности. зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности.


Регуляция гемопоэза Кроветворная ткань - динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека - около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло. Эритроциты циркулируют в крови суток, тромбоциты - около 10 суток, нейтрофилы - менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» - костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста


Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы - фибробласты, эндотелиальные клетки и др.


Регуляция гемопоэза Обновление СКК происходит медленно и при готовности к дифференцировке (процесс коммитирования), они выходят из состояния покоя (Go - фаза клеточного цикла) и становятся коммитированными. Это означает, что процесс стал необратимым и такие клетки, управляемые цитокинами, пройдут все стадии развития вплоть до конечных зрелых элементов крови. Регуляторы гемопоэза Выделяют позитивные и негативные регуляторы гемопоэза. Позитивные регуляторы необходимы: для выживания СКК и их пролиферации, для выживания СКК и их пролиферации, для дифференцировки и созревания более поздних стадий гемопоэтических клеток. для дифференцировки и созревания более поздних стадий гемопоэтических клеток. К ингибиторам (негативные регуляторы) пролиферативной активности СКК и всех видов ранних гемопоэтических предшественников относят: трансформирующий ростовой фактор β (TGF-β), трансформирующий ростовой фактор β (TGF-β), макрофагальный воспалительный белок (MIP-1α), макрофагальный воспалительный белок (MIP-1α), фактор некроза опухоли а (ФНО-α), фактор некроза опухоли а (ФНО-α), интерферон -а интерферон -а интерферон -у, интерферон -у, кислые изоферритины, кислые изоферритины, лактоферрин лактоферрин другие факторы. другие факторы.


Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК: фактор стволовых клеток (ФСК), фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г - КСФ), гранулоцитарный колониестимулирующий фактор (Г - КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма. Эта фаза регуляции СКК не зависит от запросов организма.


Факторы регуляции гемопоэза 2. Линейно-неспецифические факторы: ИЛ-3, ИЛ-3, ИЛ-4, ИЛ-4, ГМ-КСФ (для гранулоцитомонопоэза). ГМ-КСФ (для гранулоцитомонопоэза). 3. Позднедействующие линейно-специфические факторы, которые поддерживают пролиферацию и созревание коммитированных предшественников и их потомков: эритропоэтин, эритропоэтин, тромбопоэтин, тромбопоэтин, колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ- КСФ), колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ- КСФ), ИЛ-5. ИЛ-5. Один и тот же ростовой фактор может действовать на разнообразные клетки-мишени на различных этапах дифференцировки, что обеспечивает взаимозаменяемость молекул, регулирующих гемопоэз.


Регуляция гемопоэза Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки - предшественники костного мозга (БОЕ-Э), увеличивают на 3- 5 число митозов, что повышает образование эритроцитов в раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть Еще одним регулятором гемопоэза является апоптоз - запрограммированная клеточная смерть

Современная схема кроветворения подразделяет все клетки крови на 6 классов.

1) В первом классе определяются только стволовые клетки (СКК) – класс полипотентных клеток – предшественников . Эти клетки лимфоцитоподобные. Обычными способами микроскопирования не выделяются. Редко делятся, обладают свойством самоподдержания.

Одна СКК обеспечивает суточный объм крови: 200 млрд. эритроцитов и 300 млрд. лейкоцитов.

За прародительницу всех клеток крови принимается единственная СКК. Это привело к разработке Унитарной теории (А.А. Максимов).

2) Класс частично детерминированных клеток-предшественников. Клетки еще полипотентны, но среди них уже выделяют 2 типа клеток:

Клетка-предшественница лимфопоэза;

Клетка-предшественница миелопоэза.

От сюда различают два вида ткани: лимфоидная , которая составляет лимфоидные органы (тимус, селезнка, лимфоузлы, скопления лимфатических узелков); миелоидная , составляющая миелоидные органы (ККМ).

В лимфоидных органах – это ретикулярная и соединительная ткани, и последняя блокирует миелопоэз. В миелоидных органах – это ретикулярная ткань. Т.о., если меняется микроокружение, соединительная ткань теряет блокирующее свойство, и миелоидная ткань встречается в лимфоидных органах.

3) Класс унипотентных клеток-предшественников. Каждая клетка дает свой "росток"

Клетки 2-го и 3-го классов также морфологически не распознаваемы. Но эти клетки могут образовывать колонии в селезнке у смертельно облученных животных или при культивировании на питательных средах – это т.н. колонии-образующие единицы (КОЭ).

На клетки 2-го класса оказывает влияние микроокружение, а на клетки 3-го класса влияют гормоны – поэтины . Поэтому клетки 3-го класса называются поэтин-чувствительными клетками. Поэтины вырабатываются в различных органах: эритропоэтины вырабатываются в почках, желудке, яичке.; В-активин и Т-активин – в тимусе. Поэтины могут быть возбуждающего и блокирующего характера.

При установлении патологий на уровне 3-го класса требуется гормональное лечение. Около 50% патологий для данного класса практически излечимо.

4) Класс пролиферирующих клеток. Это морфологически распознаваемые клетки.

Название каждой клетки данного класса заканчивается на "-бласт". Возможна регуляция пролиферации за счет цитостатинов , цитомитогенетиков .

5) Класс созревающих клеток. Происходит в основном их дифференцировка, при этом:

Они постепенно уменьшаются в размерах;

Изменяется форма ядра (от круглой до сегментоядерного или вообще выбрасывается). Ядро становится менее базофильным;

Меняется цвет цитоплазмы;

Появляется специфическая зернистость.

Часть клеток продолжает делиться

– клетки эритроидного ряда;

– гранулоциты.

6) Класс зрелых клеток.

Они функционируют или в крови (эритроциты, тромбоциты), или за пределами сосудистого русла (лейкоциты).

Организм человека является очень сложной системой, все структуры которой взаимосвязаны. Разрыв даже одного звена влечет за собой неминуемые негативные последствия. Основой жизни организма является . Процесс ее образования (гемопоэз) подчинен множеству факторов и регулируется на разных уровнях. Эта система очень хрупкая, но важная, поэтому даже малейшие изменения хотя бы одного компонента могут послужить причиной серьезных проблем со здоровьем.

Что представляет собой процесс кроветворения и где он происходит

Сам по себе гемопоэз — это многоэтапная последовательность получения взрослых кровяных клеток из клеток, которые являются их предшественниками и не встречаются в циркулирующей по сосудам крови. Зрелыми называются клетки, которые обычно обнаруживаются в нормальном анализе крови человека.

Где же происходят все эти сложные процессы? Клетки предшественницы образуются в ряде органных структур человеческого тела.

  1. Основным коллектором кроветворных процессов является костный мозг. Все действо идет в полостях костей, где находится стромальное микроокружение. К частичкам такого окружения относятся клетки, выстилающие сосуды, фибробласты, костные клетки, жировые и многие другие. Все, что их окружает, состоит из белков, различных волокон, между которыми находится основное костное вещество. В строме есть адгезивная составляющая, которая как бы притягивает основные кроветворящие клетки. Самые «первые» структуры схемы гемопоэза находятся в костном мозге. Родоначальники лимфоцитов образуются здесь же, а дозревают потом в вилочковой железе и селезенке, а также в лимфоузлах.
  2. – еще один немаловажный орган. Она состоит из красной и белой зон. В красной зоне складируются и разрушаются эритроциты, в белой зоне обитают т-лимфоциты. Склады в-лимфоцитов находятся по окружности от красной зоны.
  3. Вилочковая железа – основной «завод» по производству лимфоцитов. Туда попадают из костного мозга недозрелые клетки. В тимусе они очень быстро преобразуются, большая часть из них гибнет, а выжившие превращаются в хелперов и супрессоров и направляются к селезенке и лимфоузлам. Чем старше человек, тем меньше его вилочковая железа. Со временем она полностью редуцируется, становясь комком жира.
  4. – это так называемые иммунные ответчики, которые за счет предоставления антигена первые реагируют на изменения в иммунитете. По периферии узла находятся Т-лимфоциты, а в сердцевине – зрелые клетки.
  5. Пейеровы бляшки – аналог узлов, только расположены они по ходу кишечника.

Вот так, пройдя множество преобразований, стволовая клетка становится одной из клеток кровяного русла.

Назначение схемы гемопоэза

Все выше сказанное можно объединить в единую схему.

Назначение такой схемы трудно переоценить. Она имеет огромное количество плюсов и несомненную значимость.

  • При помощи такой схемы можно отчетливо отследить все этапы образования интересующей клетки.
  • Если нужная клетка не образовалась, можно отследить на каком этапе произошла ошибка и цепочка действий прервалась.
  • Найдя ошибку в системе, врач может воздействовать на интересующее звено кроветворения, чтобы его простимулировать.

Всем известно, что многие , особенно кроветворной системы, характеризуются присутствием в крови незрелых форм клеток. Исходя из этого, применив подобную схему, можно отчетливо понять суть процесса, правильно поставить диагноз и своевременно начать лечение.

Таким образом, схема гемопоэза ясно представляет структуру периферической крови по компонентам, что также немаловажно в диагностике патологических процессов.

Синтез эритроцитов - один из наиболее мощных процессов образования клеток в организме. Каждую секунду в норме образуется примерно 2 млн эритроцитов, в день - 173 млрд, в год - 63 триллиона. Если перевести эти значения в массу, то ежедневно образуется около 140 г эритроцитов, каждый год - 51 кг, а масса эритроцитов, образованных в организме за 70 лет составляет порядка 3,5 тонн.

У взрослого человека эритропоэз происходит в костном мозге плоских костей, тогда как у плода островки кроветворения находятся в печени и селезёнке (экстрамедуллярное кроветворение). При некоторых патологических состояниях (талассемия, лейкозы и др.) очаги экстрамедуллярного кроветворения могут быть обнаружены и у взрослого человека.

Одним из важных элементов клеточного деления является витамин В₁₂ , необходимый для синтеза ДНК, являясь, по сути, катализатором этой реакции. В процессе синтеза ДНК витамин В₁₂ не расходуется, а циклично вступает в реакции как активное вещество; в результате такого цикла из уридин-монофосфата образуется тимидин-монофосфат. При снижении уровня витамина В₁₂ уридин плохо включается в состав молекулы ДНК, что и приводит к многочисленным нарушениям, в частности нарушению созревания клеток крови.

Еще одним фактором, оказывающим влияние на делящиеся клетки, является фолиевая кислота . Она как кофермент, в частности, участвует в синтезе пуриновых и пиримидиновых нуклеотидов.

Общая схема постэмбрионального гемопоэза

Гемопоэз (кроветворение) - очень динамичная, четко сбалансированная, непрерывно обновляющаяся система. Единым родоначальником кроветворения является стволовая клетка. По современным представлениям, это целый класс клеток, закладывающихся в онтогенезе, главным свойством которых является способность давать все ростки кроветворения - эритроцитарный, мегакариоцитарный, гранулоцитарный (эозинофилы, базофилы, нейтрофилы), моноцитарно-макрофагальный, Т-лимфоцитарный, В-лимфоцитарный.

В результате нескольких делений клетки теряют способность быть универсальными родоначальниками и превращаются в полипотентные клетки. Такой, например, является клетка-предшественница миелопоэза (эритроциты, мегакариоциты, гранулоциты). Еще через несколько делений вслед за универсальностью исчезает и полипотентность, клетки становятся унипотентными (ˮуниˮ - единственное), то есть способными к дифференцированию только в одном направлении.

Наиболее делящимися в костном мозге являются клетки - предшественники миелопоэза (см. рисунок ⭡), по мере дифференцировки уменьшается количество оставшихся делений, и морфологически различаемые клетки красной крови постепенно перестают делиться.

Дифференцировка клеток эритроидного ряда

Собственно эритроидный ряд клеток (эритрон) начинается с унипотентных бурстобразующих клеток, являющихся потомками клеток-предшественниц миелопоэза. Бурстобразующие клетки в культуре тканей растут мелкими колониями, напоминающими взрыв (бурст). Для их созревания необходим специальный медиатор - бурстпромоторная активность. Это фактор влияния микроокружения на созревающие клетки, фактор межклеточного взаимодействия.

Выделяют две популяции бурстобразующих клеток: первая регулируется исключительно бурстпромоторной активностью, вторая - становится чувствительной к воздействию эритропоэтина. Во второй популяции начинается синтез гемоглобина , продолжающийся в эритропоэтин-чувствительных клетках и в последующих созревающих клетках.

На этапе бурстобразующих клеток происходит принципиальное изменение клеточной активности - от деления к синтезу гемоглобина. В последующих клетках деление приостанавливается (последняя клетка в этом ряду, способная к делению, - полихроматофильный эритробласт), ядро уменьшается в абсолютном размере и по отношению к объему цитоплазмы, в которой идет синтез веществ. На последнем этапе ядро из клетки удаляется, затем исчезают остатки РНК; их можно еще обнаружить при специальной окраске в молодых эритроцитах - ретикулоцитах, но нельзя найти в зрелых эритроцитах.

Cхема основных этапов дифференцировки клеток эритроидного ряда выглядит следующим образом:
плюрипотентная стволовая клетка ⭢ бурстобразующая единица эритроидного ряда (БОЕ-Э) ⭢ колониеобразующая единица эритроидного ряда (КОЕ-Э) ⭢ эритробласт ⭢ пронормоцит ⭢ базофильный нормоцит ⭢ полихроматический нормоцит ⭢ ортохроматический (оксифильный) нормоцит ⭢ ретикулоцит ⭢ эритроцит .

Регуляция эритропоэза

Процессы регуляции кроветворения до сих пор изучены недостаточно. Необходимость непрерывно поддерживать гемопоэз, адекватно удовлетворять потребности организма в различных специализированных клетках, обеспечивать постоянство и равновесие внутренней среды (гомеостаз) - всё это предполагает существование сложных регуляторных механизмов, действующих по принципу обратной связи.

Наиболее известным гуморальным фактором регуляции эритропоэза, является гормон эритропоэтин . Это стресс-фактор, синтезирующийся в различных клетках и в различных органах. Большее количество его образуется в почках, однако даже при их отсутствии эритропоэтин вырабатывается эндотелием сосудов, печенью. Уровень эритропоэтина стабилен и изменяется в сторону повышения при резкой и обильной кровопотере, остром гемолизе , при подъеме в горы, при острой ишемии почек. Парадоксально, что при хронических анемиях уровень эритропоэтина обычно нормален, за исключением апластической анемии, где его уровень стабильно чрезвычайно высок.

Наряду с эритропоэтином, в крови присутствуют также ингибиторы эритропоэза. Это большое число разнообразных веществ, часть из которых может быть отнесена к среднемолекулярным токсинам, накапливающимся вследствие патологических процессов, связанных с повышенным их образованием либо нарушением их выведения.

На ранних этапах дифференцировки регуляция в эритроне осуществляется в основном за счёт факторов клеточного микроокружения, а позже - при балансе активности эритропоэтина и ингибиторов эритропоэза. В острых ситуациях, когда необходимо быстро создать большое число новых эритроцитов, включается стрессовый эритропоэтиновый механизм - резкое преобладание активности эритропоэтина над активностью ингибиторов эритропоэза. В патологических ситуациях, напротив, ингибиторная активность может преобладать над эритропоэтиновой, что приводит к торможению эритропоэза.

Синтез гемоглобина

В состав гемоглобина входит железо. Недостаточное количество этого элемента в организме может привести к развитию анемии (см. Железодефицитная анемия). Имеется зависимость между возможностью синтезировать определённое количество гемоглобина (что обусловлено запасами железа) и эритропоэза - по всей вероятности, существует пороговое значение концентрации гемоглобина, без которой эритропоэз прекращается.

Синтез гемоглобина начинается в эритроидных предшественниках на этапе образования эритропоэтин-чувствительной клетки. У плода, а затем и в раннем послеродовом периоде у ребёнка образуется гемоглобин F, а далее, в основном, - гемоглобин А. При напряжении эритропоэза (гемолиз, кровотечение) в крови взрослого человека может появляться некоторое количество гемоглобина F.

Гемоглобин состоит из двух вариантов глобиновых цепей а и р, окружающих гем, содержащий железо. В зависимости от изменения последовательностей аминокислотных остатков в цепях глобина изменяются химикофизические свойства гемоглобина, в определённых условиях он может кристаллизоваться, становиться нерастворимым (например гемоглобин S при серповидно-клеточной анемии).

Свойства эритроцитов

Эритроциты обладают несколькими свойствами. Наиболее известным является транспорт кислорода (O₂) и углекислого газа (CO₂). Он осуществляется гемоглобином, который связывается поочередно с одним и другим газом в зависимости от напряжения соответствующего газа в окружающей среде: в лёгких - кислорода, в тканях - углекислого газа. Химизм реакции заключается в вытеснении и замещении одного газа другим из связи с гемоглобином. Кроме того, эритроциты являются переносчиками оксида азота (NO), ответственного за сосудистый тонус, а также участвующего в передаче клеточных сигналов и многих других физиологических процессах.

Эритроциты обладают свойством изменять свою форму, проходя через капилляры малого диаметра. Клетки распластываются, закручиваются в спираль. Пластичность эритроцитов зависит от различных факторов, в том числе от строения мембраны эритроцита, от вида содержащегося в нём гемоглобина, от цитоскелета. Кроме того, эритроцитарная мембрана окружена своего рода ˮоблакомˮ из различных белков, которые могут менять деформируемость. К ним относятся иммунные комплексы, фибриноген. Эти вещества меняют заряд мембраны эритроцита, прикрепляются к рецепторам, ускоряют оседание эритроцитов в стеклянном капилляре.

В случае тромбообразования эритроциты являются центрами образования фибриновых тяжей, это может не только изменять деформируемость, вызывать их агрегацию, слипание в монетные столбики, но и разрывать эритроциты на фрагменты, отрывать от них куски мембран.

Реакция оседания эритроцитов (РОЭ) отражает наличие на их поверхности заряда, отталкивающего эритроциты друг от друга. Появление при воспалительных реакциях, при активации свертывания и т.д. вокруг эритроцита диэлектрического облака приводит к уменьшению сил отталкивания, в результате чего эритроциты начинают быстрее оседать в вертикально поставленном капилляре. Если капилляр наклонить на 45°, то силы отталкивания действуют только на протяжении прохождения эритроцитами поперечника просвета капилляра. Когда клетки достигают стенки, они скатываются по ней, не встречая сопротивления. В результате в наклонённом капилляре показатель оседания эритроцитов увеличивается десятикратно.

Источники:
1. Анемический синдром в клинической практике / П.А. Воробьёв, - М., 2001;
2. Гематология: Новейший справочник / Под ред. К.М. Абдулкадырова. - М., 2004.

Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.

Различают два вида кроветворения:

миелоидное кроветворение:

  • эритропоэз;
  • гранулоцитопоэз;
  • тромбоцитопоэз;
  • моноцитопоэз.

лимфоидное кроветворение:

  • Т-лимфоцитопоэз;
  • В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:

  • эмбриональный;
  • постэмбриональный.

Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови . Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:

  • желточный;
  • гепато-тимусо-лиенальный;
  • медулло-тимусо-лимфоидный.

Наиболее важными моментами желточного этапа являются:

  • образование стволовых клеток крови;
  • образование первичных кровеносных сосудов.

Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо лиенальный

этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25-30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка . Селезенка закладывается на 4-й неделе, с 7-8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.

Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап кроветворения

Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться - экстрамедуллярное кроветворение.

Постэмбриональный период кроветворения - осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

Теории кроветворения

  • унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественникастволовой клетки;
  • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
  • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.

В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки;
  • 3 класс - унипотентные клетки;
  • 4 класс - бластные клетки;
  • 5 класс - созревающие клетки;
  • 6 класс - зрелые форменные элементы.

1 класс - стволовая полипотентная клетка, способная к поддержанию своей популяции.

По морфологии соответствует малому лимфоциту, является полипотентной , то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток - индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы - КОЕ.

2 класс - полустволовые

ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3-4 недели) и также поддерживают численность своей популяции.

3 класс - унипотентные поэтин-чувствительные клетки

Предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ - поэтинов , специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).

Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.

4 класс - бластные

(молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

5 класс - класс созревающих клеток

Характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток - от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).

6 класс - зрелые форменные элементы крови

Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки - макрофаги . Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

В Т- и в В-лимфоцитопоэзе выделяют три этапа:

  • костномозговой этап;
  • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
  • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
  • 3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

Второй этап - этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина , выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс.

Третий этап - этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.

Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток:

  • 1 класс - стволовые клетки;
  • 2 класс - полустволовые клетки-предшественницы лимфопоэза;
  • 3 класс - унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза.

Второй этап антигеннезависимой дифференцировки у птиц осуществляется в специальном центральном лимфоидном органе - фабрициевой сумке.

Третий этап - антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт.